1,001 research outputs found

    CSIP - a Novel Photon-Counting Detector Applicable for the SPICA Far-Infrared Instrument

    Full text link
    We describe a novel GaAs/AlGaAs double-quantum-well device for the infrared photon detection, called Charge-Sensitive Infrared Phototransistor (CSIP). The principle of CSIP detector is the photo-excitation of an intersubband transition in a QW as an charge integrating gate and the signal amplification by another QW as a channel with very high gain, which provides us with extremely high responsivity (10^4 -- 10^6 A/W). It has been demonstrated that the CSIP designed for the mid-infrared wavelength (14.7 um) has an excellent sensitivity; the noise equivalent power (NEP) of 7x10^-19 W/rHz with the quantum efficiency of ~2%. Advantages of the CSIP against the other highly sensitive detectors are, huge dynamic range of >10^6, low output impedance of 10^3 -- 10^4 Ohms, and relatively high operation temperature (>2K). We discuss possible applications of the CSIP to FIR photon detection covering 35 -- 60 um waveband, which is a gap uncovered with presently available photoconductors.Comment: To appear in Proc. Workshop "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies". Eds. A.M. Heras, B. Swinyard, K. Isaak, and J.R. Goicoeche

    The Influence of Spatial Resolution due to Hot-Wire Sensors on Measurements in Wall-Bounded Turbulence.

    Get PDF
    Reassessment of compiled data reveal that recorded scatter in the hot-wire measured near-wall peak in viscous-scaled streamwise turbulence intensity is due in large part to the simultaneous competing effects of Reynolds number and viscous-scaled wire-length l ( lUt n, where l is the wirelength, Ut is friction velocity and n is kinematic viscosity). These competing factors can explain much of the disparity in existing literature, in particular explaining how previous studies have incorrectly concluded that the inner-scaled near-wall peak is independent of Re. We also investigate the appearance of the, so-called, ‘outerpeak’ in the broadband streamwise intensity, found by some researchers to occur within the log-region of high Reynolds number boundary layers. We show that this ‘outer-peak’ is most likely a symptom of attenuation of small-scales due to large l . Fully mapped energy spectra, obtained with two different l , are presented to demonstrate this phenomena. The spatial attenuation resulting from wires with large l effectively filters small-scale fluctuations from the recorded signal

    124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics

    Get PDF
    Optical super-resolution techniques reach unprecedented spatial resolution down to a few nanometers. However, efficient multiplexing strategies for the simultaneous detection of hundreds of molecular species are still elusive. Here, we introduce an entirely new approach to multiplexed super-resolution microscopy by designing the blinking behavior of targets with engineered binding frequency and duration in DNA-PAINT. We assay this kinetic barcoding approach in silico and in vitro using DNA origami structures, show the applicability for multiplexed RNA and protein detection in cells, and finally experimentally demonstrate 124-plex super-resolution imaging within minutes.We thank Martin Spitaler and the imaging facility of the MPI of Biochemistry for confocal imaging support

    Highly efficient 5\u27 capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase

    Get PDF
    Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly. © 2018, Bird et al

    Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis

    Get PDF
    Mycobacterium tuberculosis infection continues to cause substantial human suffering. New chemotherapeutic strategies, which require insight into the pathways essential for M. tuberculosis pathogenesis, are imperative. We previously reported that depletion of the CarD protein in mycobacteria compromises viability, resistance to oxidative stress and fluoroquinolones, and pathogenesis. CarD associates with the RNA polymerase (RNAP), but it has been unknown which of the diverse functions of CarD are mediated through the RNAP; this question must be answered to understand the CarD mechanism of action. Herein, we describe the interaction between the M. tuberculosis CarD and the RNAP β subunit and identify point mutations that weaken this interaction. The characterization of mycobacterial strains with attenuated CarD/RNAP β interactions demonstrates that the CarD/RNAP β association is required for viability and resistance to oxidative stress but not for fluoroquinolone resistance. Weakening the CarD/RNAP β interaction also increases the sensitivity of mycobacteria to rifampin and streptomycin. Surprisingly, depletion of the CarD protein did not affect sensitivity to rifampin. These findings define the CarD/RNAP interaction as a new target for chemotherapeutic intervention that could also improve the efficacy of rifampin treatment of tuberculosis. In addition, our data demonstrate that weakening the CarD/RNAP β interaction does not completely phenocopy the depletion of CarD and support the existence of functions for CarD independent of direct RNAP binding

    Model-based tracking of complex articulated objects

    Full text link
    corecore