1,252 research outputs found

    An investigation of the dissolution of hafnium-free zirconium in hydrofluoric acid and the effect of fluoride additions

    Get PDF
    Hafnium-free zirconium has assumed great importance in commercial use in recent years. When economical methods were developed in 1950 to remove hafnium from Zr, a metal was produced which not only exhibited good corrosion resistance and desirable physical properties, but also had a very low absorption cross section for thermal neutrons. Such a metal could obviously be utilized to advantage as a structural material for nuclear reactors. This application is the most important one for Zr at present. Good corrosion resistance to most mineral acids is one of the outstanding non-nuclear properties of Zr. Hf-free Zr has good corrosion resistance in all mineral acids with exception of hydrofluoric acid, concentrated sulfuric and phosphoric acids, and aqua regia. The resistance of Zr to attack in concentrated nitric acid is excellent, with but negligible attack occurring in fuming nitric acid. The corrosion of Zr in hydrochloric acid is particularly dependent on the purity of the metal. It has been shown that high carbon graphite melted Zr is severely embrittled in HCl because of selective attack of the carbides. In general, Hf-free Zr (containing less than 0.1% Hf) is more corrosion resistant than Zr containing the usual 2.5% Hf. Small percentages of other impurities in Zr such as carbon, nitrogen, and oxygen will also decrease corrosion resistance. It has been stated that Zr has poor corrosion resistance in HF. It was proposed that a quantitative investigation of the dissolution of Zr in HF be made to provide additional data to that already gathered on the corrosion of Zr in other mineral acids. Since the rate of dissolution of Zr in HF is greater than in any other mineral acid, a study of the rate and mechanism of the reaction and possible passivation effects might be a valuable addition to present knowledge --Introduction, pages 1-2

    Self-tuning of threshold for a two-state system

    Full text link
    A two-state system (TSS) under time-periodic perturbations (to be regarded as input signals) is studied in connection with self-tuning (ST) of threshold and stochastic resonance (SR). By ST, we observe the improvement of signal-to-noise ratio (SNR) in a weak noise region. Analytic approach to a tuning equation reveals that SNR improvement is possible also for a large noise region and this is demonstrated by Monte Carlo simulations of hopping processes in a TSS. ST and SR are discussed from a little more physical point of energy transfer (dissipation) rate, which behaves in a similar way as SNR. Finally ST is considered briefly for a double-well potential system (DWPS), which is closely related to the TSS

    Constraints on Fluid Dynamics from Equilibrium Partition Functions

    Full text link
    We study the thermal partition function of quantum field theories on arbitrary stationary background spacetime, and with arbitrary stationary background gauge fields, in the long wavelength expansion. We demonstrate that the equations of relativistic hydrodynamics are significantly constrained by the requirement of consistency with any partition function. In examples at low orders in the derivative expansion we demonstrate that these constraints coincide precisely with the equalities between hydrodynamical transport coefficients that follow from the local form of the second law of thermodynamics. In particular we recover the results of Son and Surowka on the chiral magnetic and chiral vorticity flows, starting from a local partition function that manifestly reproduces the field theory anomaly, without making any reference to an entropy current. We conjecture that the relations between transport coefficients that follow from the second law of thermodynamics agree to all orders in the derivative expansion with the constraints described in this paper.Comment: Typos corrected, References adde

    Multifractal characterization of stochastic resonance

    Full text link
    We use a multifractal formalism to study the effect of stochastic resonance in a noisy bistable system driven by various input signals. To characterize the response of a stochastic bistable system we introduce a new measure based on the calculation of a singularity spectrum for a return time sequence. We use wavelet transform modulus maxima method for the singularity spectrum computations. It is shown that the degree of multifractality defined as a width of singularity spectrum can be successfully used as a measure of complexity both in the case of periodic and aperiodic (stochastic or chaotic) input signals. We show that in the case of periodic driving force singularity spectrum can change its structure qualitatively becoming monofractal in the regime of stochastic synchronization. This fact allows us to consider the degree of multifractality as a new measure of stochastic synchronization also. Moreover, our calculations have shown that the effect of stochastic resonance can be catched by this measure even from a very short return time sequence. We use also the proposed approach to characterize the noise-enhanced dynamics of a coupled stochastic neurons model.Comment: 10 pages, 21 EPS-figures, RevTe

    Constraints on Superfluid Hydrodynamics from Equilibrium Partition Functions

    Full text link
    Following up on recent work in the context of ordinary fluids, we study the equilibrium partition function of a 3+1 dimensional superfluid on an arbitrary stationary background spacetime, and with arbitrary stationary background gauge fields, in the long wavelength expansion. We argue that this partition function is generated by a 3 dimensional Euclidean effective action for the massless Goldstone field. We parameterize the general form of this action at first order in the derivative expansion. We demonstrate that the constitutive relations of relativistic superfluid hydrodynamics are significantly constrained by the requirement of consistency with such an effective action. At first order in the derivative expansion we demonstrate that the resultant constraints on constitutive relations coincide precisely with the equalities between hydrodynamical transport coefficients recently derived from the second law of thermodynamics.Comment: 46 page

    Evaluation of be-38 percent al alloy final report, 27 jun. 1964 - 28 feb. 1965

    Get PDF
    Mechanical properties, microstructural features, and general metallurgical quality of beryllium- aluminum allo

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    Hydrodynamics in 1+1 dimensions with gravitational anomalies

    Full text link
    The constraints imposed on hydrodynamics by the structure of gauge and gravitational anomalies are studied in two dimensions. By explicit integration of the consistent gravitational anomaly, we derive the equilibrium partition function at second derivative order. This partition function is then used to compute the parity-violating part of the covariant energy-momentum tensor and the transport coefficients.Comment: 9 pages, JHEP format.v2; added comments and references, matching published versio

    Exact Solution for the Time Evolution of Network Rewiring Models

    Full text link
    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature including examples of Urn, Backgammon, and Balls-in-Boxes models, the Watts and Strogatz rewiring problem and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a Minority game also show features described by our model.Comment: This version contains a few footnotes not in published Phys.Rev.E versio
    corecore