129 research outputs found

    Camera motion estimation through planar deformation determination

    Get PDF
    In this paper, we propose a global method for estimating the motion of a camera which films a static scene. Our approach is direct, fast and robust, and deals with adjacent frames of a sequence. It is based on a quadratic approximation of the deformation between two images, in the case of a scene with constant depth in the camera coordinate system. This condition is very restrictive but we show that provided translation and depth inverse variations are small enough, the error on optical flow involved by the approximation of depths by a constant is small. In this context, we propose a new model of camera motion, that allows to separate the image deformation in a similarity and a ``purely'' projective application, due to change of optical axis direction. This model leads to a quadratic approximation of image deformation that we estimate with an M-estimator; we can immediatly deduce camera motion parameters.Comment: 21 pages, version modifi\'ee accept\'e le 20 mars 200

    Visual motion ambiguities of a plane in 2-D FS sonar motion sequences

    No full text
    â–º Addressing plane motion interpretation ambiguities in underwater 2D forward-scan sonar images. â–º Same sonar matches in two views arise from two different motions, even with pure translation or rotation. â–º Corresponding world planes are mirror images with respect to sonar image plane. â–º Two solutions often are feasible motions, not resolved by physical (e.g., visibility) constraints. â–º Applications include sonar-based visual servo of subsea platforms in turbid environments. Sonar is the most common imaging modality in underwater, and high-resolution high data rate 2-D video systems have been emerging in recent years. As for visually guided terrestrial robot navigation and target-based positioning, the estimation of 3-D motion by tracking features in recorded 2-D sonar images is also a highly desirable capability for submersible platforms. Additionally, theoretical results dealing with robustness and multiplicity of solution constitute important fundamental findings due to nature of sonar data, namely, high noise level, narrow field of view coverage, scarcity of robust features, and incorrect matches. This paper explores the inherent ambiguities of 3-D motion and scene structure interpretation from 2-D forward-scan sonar image sequences. Analyzing the sonar image motion transformation model, which depends on the affine components of the projective transformation (or homography) of two plane views, we show that two interpretations are commonly inferred. The true and spurious planes form mirror images relative to the zero-elevation plane of the sonar reference frame. Even under each of pure rotation or translation, a spurious motion exists comprising both translational and rotational components. In some cases, the two solutions share certain motion components, where the imaged surface becomes parallel to a plane defined by two of the sonar coordinate axes. A unique solution exists under the very special condition where the sonar motion aligns the imaged plane with the zero-elevation planes. We also derive the relationship between the two interpretations, thus allowing closed-form computation of both solutions
    • …
    corecore