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Research Article

Two-dimensional forward-looking sonar
image registration by maximization
of peripheral mutual information

Sanming Song1, J. Michael Herrmann2, Bailu Si1, Kaizhou Liu1

and Xisheng Feng1

Abstract
Monitoring the field of operation of an underwater vehicle is crucial during missions near the sea floor. The forward-
looking sonar is often the only available sensor for the observation of the ambient turbid water environment. Sonar image
registration is not only a first step towards a panoramic mosaic but it also provides an initial motion parameter estimation
for the vehicle self-localization and navigation. In this article, a peripheral mutual information (PMI) maximization method
is proposed for the sonar image registration. Peripheral mutual information is inspired by regional mutual information
(RMI) which makes use of the closed-form solution for the Shannon entropy by the assumption that the data vectors made
of neighbouring pixels are normally distributed, an assumption that ignores correlations between the pixels in sonar
images. To accommodate the fact that the neighbouring pixels show dependencies due to acoustic reverberation and
dispersion, only the peripheral information in the neighbourhood of a pixel is used in peripheral mutual information for the
calculation of the mutual information. Experiments show that the peripheral mutual information registration function is
much smoother than that of regional mutual information. Further experiments on the two-dimensional forward-looking
sonar image registration demonstrate the efficiency of peripheral mutual information.
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Introduction

The forward-looking sonar is an important monitoring

device for the sea floor environments. For example, as

more and more pipelines are laid on the seabed to facilitate

the exploration and exploitation of marine resources, there

is an increasing demand to deploy autonomous underwater

robots to perform pipeline construction and maintenance.

In order to detect pipelines that are spanned over the

seabed, or buried or half-buried under the seabed, various

sensors are required, such as cameras, side-scan sonars,

multibeam sonars, sub-bottom profilers and magnet-

ometers. The sensor data are analysed either by an

on-board operator1 or automatically within the underwater

vehicle.2 Although post-action inspections are necessary to

identify potential risks, predictive measures should also be
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taken to enhance the safety of the pipelines, that is, moni-

toring the pipeline laying process.

Unfortunately, when a pipeline laying robot operates on

the seabed, mud and sand can be stirred up easily, leading

to turbid waters, which decreases the visual distance of

optic sensors drastically. In this case, the forward-looking

sonar is essentially the only available sensor that can be

used to observe the immediate environment. On the one

hand, the emergence of the high-frequency forward-

looking sonar (e.g. BlueView [Teledyne BlueView, Inc.,

Seattle, Washington] and DIDSON [soundmetrics, Belle-

vue, Washington]) enables the underwater robots to

achieve precise observations in turbid waters.3 On the other

hand, only a very limited area can be scanned in each frame

because of the restricted coverage of the acoustic device.4

Therefore, local sonar images should be stitched to form a

panoramic map that supports the analysis of macroscopical

geographic and geomorphic conditions. This will also be

useful for the registration of forward-looking sonar images

in a wide range of applications, such as active hydrothermal

vent observation5 and wreck salvage.6

The image stitching process can generally be decom-

posed into two steps, image-pair registration and global

error reduction.7,8 An appropriate image registration

method does not only provide cues for the global feature

mapping but also alleviates the post-adjustment costs.

Moreover, compared to the sonar image registration, global

adjustment does not depend on the prior knowledge of the

underwater acoustic imaging mechanism. Therefore, only

image-pair registration is considered in this article.

Consider two images f ðxÞ and gðxÞ that were taken by

the forward-looking sonar at different times. If the images

are overlapping, that is, if a transformation

x2 ¼ Tx1 (1)

can be found that relates pixel x1 in image f with pixel x1

in image g, then we should expect a transformation matrix

that minimizes the matching error within the overlapping

area

T� ¼ arg min
X
ðx1;x2Þ

j f ðx1Þ � gðx2Þj (2)

In image registration, we aim at optimizing the transfor-

mation matrix T which is determined by the vector of

motion parameter Θ, which typically includes translation

ðΔx;ΔyÞ, elevation Δz, rotation �, tilt f and roll  . Three

types of methods have been proposed for forward-looking

sonar image registration.

The first type is based on feature point extraction and is

directly derived from its counterparts in optic image pro-

cessing. In the preprocessing stage, interest feature points

are extracted from each image and a matching strategy is

used to construct the feature point pairs ðxi
1;x

j
2Þ, where the

superscripts i and j refer to the ith and jth feature point in f

and g, respectively. Then, a group of equations in the form

of equation (1) can be built and the motion parameters can

be estimated by the least square method. In 2005, Negah-

daripour and Sabzmeydani9 extracted Harris corner points

from forward-looking sonar images and proposed a

windowed-searching skill to perform the pairwise match-

ing. Kim et al.10 also proposed a similar scheme, with the

only difference that the Harris corner points are extracted

from the third and the fourth layers in the Gaussian pyra-

mid. However, the feature points extracted by the two

methods tend to contain too much noise, thus compromis-

ing the matching process. In 2011, Negahdaripour et al.11

pointed out that it is difficult to extract scale-invariant fea-

ture transform (SIFT) feature points from forward-looking

sonar images of a natural, unstructured seabed.

The second category belongs to cluster- or region-based

methods. Though each single feature point is sensitive to

strong speckle noise in underwater sonar images,12 the

sonar’s motion can be robustly perceived by watching the

movement trends of a set of feature points, that is, it is

possible to estimate the motion parameters by analysing

their spatial distribution. From another perspective, model-

ling the spatial distribution provides an intuitive expression

for the basic mapping function, that is, equation (2). Con-

sequently, a closed-form solution or a gradient descent pro-

cedure could be derived. In 2010, Johannsson et al.13

considered those points as features whose gradient exceeds

a given threshold. To get rid of spurious feature points, the

image was smoothed in the preprocessing stage and the

smaller clusters were removed in the postprocessing stage.

Then, the spatial distribution of the feature points is mod-

elled by the standard normal distribution transform (NDT)

and the motion parameters are pursued by the gradient

descent method. However, not all feature point distribu-

tions in each equally-sized grid can be well described by

a Gaussian model. To better accommodate the Gaussian

assumption, Aykin and Negahdaripour14 directly extracted

the shadow areas as a feature region, and further refined the

NDT algorithm by subdividing those larger or concave

areas into semi-equal–sized blobs using the k-means clus-

tering method. The performance of NDT largely depends

on the feature point extraction method and the blob sub-

division strategy. Being a statistical description that is

derived from the Parzen window,15 NDT is able to reduce

the impact of noisy feature points, while at the same time

weakens the true motion parameters.

The third class of methods calculates the motion para-

meters in the frequency domain. For the Fourier transform,

the phase of the cross-power spectrum is equivalent to the

phase difference between the images,16 and the scale

change and the rotation can be converted to the phase dif-

ference in the Fourier log-magnitude spectra.17 This

demonstrates that the motion parameters could be solved

by locating the impulse in the Fourier domain or the Fourier

log-magnitude domain. In 2012, Hurtós et al.18 applied the

Fourier–Mellin transform17 (FMT) to image registration

for forward-looking sonars. Two strategies are deployed
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to enhance information related to objects or shadows. On

the one hand, a blending technique, which includes the

inhomogeneous insonification pattern correction and the

contrast limited adaptive histogram equalization, is pro-

posed to eliminate background noise.19 On the other hand,

two masks, one in the polar coordinates and another in the

Cartesian coordinates, are used to diminish the edge effects

that are arising from the image boundary.20 Note that in the

FMT procedure,17 it is advised to sharp the images with an

high-pass filter, so that a clearer peak response could be

obtained in the normalized cross-spectrum matrix. In other

words, it is hard to find the transformation parameters when

the highlighted object area or the shadow area has no clear

contours or edges, as is the case for the far-distance

forward-looking sonar scanning in a realistic setting. By

the way, Li et al.21 proposed an adaptive scheme to register

the sonar images, where the SIFT-based method and the

FMT method are selected alternatively based on the num-

ber and the credibility of feature points.

In this article, we propose a new method to estimate the

transformation parameters by maximizing the mutual informa-

tion. As our method uses the peripheral information to analy-

tically calculate the mutual information, we will refer to it by

the abbreviation PMI. Mutual information methods, which will

be discussed in the next section, have been widely studied in

medical image registration.22–24 When calculating the Shan-

non entropy, the joint and marginal probabilities are approxi-

mated by the histogram, which is not feasible in high-

dimensional image registration. To make use of the closed-

form solution for the Shannon entropy in the Gaussian case,

Russakoff et al.25 proposed a regional mutual information

(RMI) scheme to measure the similarity between images.

However, the analytic solution can be used only when the data

vectors containing the neighbouring pixels are approximately

normally distributed, which cannot be assumed for underwater

two-dimensional (2D) forward-looking sonar images. Due to

the reverberation of the sea floor and the scattering effects of

the water, the sonar images are full of speckle noise, causing

deviations to the intensity of each pixel and correlations

between neighbouring pixels. To better support the multi-

dimensional normal distribution assumption, a peripheral

mutual information (PMI) method, which only utilizes the

outermost neighbours to enhance the independence

between different dimensions, is proposed for the calcula-

tion of the Gauss–Shannon entropy. Our experiments show

that PMI has a much smoother registration function, which

benefits the difficult search in the maximization of the

mutual information. Application to 2D forward-looking

sonar image registration demonstrates its efficiency.

If a machine is laying the pipeline on the seabed, the

distance to the sea bottom is kept relatively stable. There-

fore, the pipeline machine can be approximately considered

as traveling in a horizontal plane and only the translation

and rotation parameters have to be estimated. Such a sim-

plified motion model has also been adopted by Johannsson

et al.13 and Hurtós et al.18,20

The rest of the article is organized as follows. The

mutual information and RMI are briefly introduced in sec-

tion Methodology. The derivation of PMI from the two

conditions of RMI, including the normal distribution and

the independence assumption, will be discussed in detail in

section Peripheral mutual information. The experiment

results are presented in section Experiments. We briefly

conclude in the final section.

Methodology

The objective of image registration is searching the trans-

formation parameters Θ� that maximize the mutual infor-

mation Ið f ; gÞ between images f and g

Θ� ¼ arg max Ið f ; gjΘÞ (3)

Overview of mutual information

Mutual information between images f and g is defined as

the Kullback–Leibler divergence between the joint prob-

ability pfgðx1; x2Þ and the product of the marginal probabil-

ities pf ðx1Þ and pgðx2Þ

Ið f ; gÞ ¼
X
x1;x2

pfgðx1; x2Þ log
pfgðx1; x2Þ

pf ðx1Þpgðx2Þ
(4)

In terms of the entropy, equation (4) can be expressed as

Ið f ; gÞ ¼ Hð f Þ þ HðgÞ � Hð f ; gÞ (5)

where the entropy is defined as

Hð f Þ ¼ �
X
x1

pf ðx1Þ log pf ðx1Þ (6)

and the joint entropy Hð f ; gÞ is

Hð f ; gÞ ¼ �
X
x1;x2

pfgðx1; x2Þ log pfgðx1; x2Þ (7)

The general steps for the image registration by max-

imizing the mutual information between two sonar

images, that is, the floating image f and the reference

image g, can be described as follows. The parameter

set Θ is initialized by Θ0, which defines a new coordi-

nate that the floating image f should be mapped into in

the interpolation step. To explicitly calculate the

mutual information IðΘÞ between the mapped image

f 0 and the reference image g, the joint and the marginal

probabilities should be counted beforehand, which can

be drawn from the joint histogram approximately.

Then, local maxima of the mutual information could

be pursued by a local search strategy, like Powell’s

multidimensional direction set method and Brent’s

one-dimensional line minimization. The parameters Θ
are updated correspondingly. Eventually, the iterations

are terminated if a stop criterion, that is, k ΔΘ k< ", is

satisfied.

Song et al. 3



State of the art

Registering images by maximizing the mutual information

dates back to Maes et al.22 They extended the heuristic

dispersion measures proposed by Woods et al.26 to

Shannon entropy and were successful in the alignment of

the computed tomography (CT), magnetic resonance (MR)

and positron emission tomography (PET) images. Later,

researchers have tried to include various kinds of prior

knowledge to improve its practicality and discriminability.

With the image transformation, different interpolation

functions have been proposed to smooth the registration

function. Chen and Varshney24 replaced the trilinear partial

volume (PV) distribution interpolation with a generalized

partial volume estimation (GPVE), whose essence is extend-

ing the bilinear interpolation function to a general B-spline

function. With a higher order neighbourhood, a smoother reg-

istration function could be obtained, and the interpolation-

induced artefacts could be alleviated. Lu et al.27 proposed

another interpolation scheme that uses a Hanning wind-

owed sinc function as kernel function, which is reported

to have reduced the effect of the local extremes.

With the calculation of joint and marginal probabilities,

different methods have been used to increase the robustness

of mutual information. On the one hand, prior knowledge

could be included into the mutual information. Pluim

et al.23 included spatial information by combining mutual

information with a term based on the image gradient. On

the other hand, Zhao et al.28 adopted the Rényi entropy in

place of Shannon entropy to reduce the effects of local

extremes to the registration function. Voronov and Tash-

linskii29 compared the gradient of different entropies,

where the probability function is described by the Gauss–

Parzen window function. It is concluded that the Shannon

entropy has the lowest computational complexity, while

Rényi and Tsallis entropies provide a faster convergence

rate and lower variance of parameter estimates.

Regional mutual information

The joint and marginal probabilities that are used in calculat-

ing the mutual information take into account only the relation-

ships between corresponding individual pixels.22–24,27,28

However, when modelling the sonar image with a Markov

random field,12,30,31 it is found that pixel intensities depend on

the neighbouring pixels. Such a positive correlation may be

introduced by the reverberation of the seabed and the scatter-

ing effects of the water on the acoustic waves, which demon-

strates that it is necessary to include the neighbourhood

information in registering the 2D sonar image pairs.

If the neighbourhood configuration, instead of the indi-

vidual pixels, is included in calculating the joint and mar-

ginal probabilities, equation (4) becomes

Ið f ; gÞ ¼
X
X1;X2

pfgðX1;X2Þ log
pfgðX1;X2Þ

pf ðX1ÞpgðX2Þ
(8)

X is a multidimensional column vector, including a

pixel and its neighbours. Now that the calculation of mutual

information depends on the local block or region, it is

appropriately named as regional mutual information.25

However, the joint probability pfgðX1 ;X2Þ and the mar-

ginal probabilities, pf ðX1Þ and pgðX2Þ, become intractable

in the high-dimensional space. For example, for the

second-order neighbourhood in Figure 1, the length of X1

and X2 is 9. Even with a 2D grey–grey image registration,

the intensity combination for a single image is 2569, and

the size of joint histogram is 25618, such that the joint

histogram–based probability calculation scheme is compu-

tationally infeasible for multichannel image registration.

Consider registering a 2D grey image of Nf ¼ 256 grey

levels with a 2D colour image of Ng¼ 2563 intensity

combinations, the size of joint histogram would be

Nf � Ng¼ 2564. Therefore, it is prerequisite to resort to

other feasible methods to calculate the Shannon entropy.

Closed-form solutions for the Shannon entropy are avail-

able only in some generic probability distributions, so it

makes sense to carry out some approximate discussions. For

example, a D-dimensional variable X, which follows a nor-

mal distribution with mean � and covariance Σ
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Figure 1. Concatenation of two corresponding regions to a
vector in a row-wise style, which was used by Russakoff et al.25 to
calculate the Shannon entropy in a closed form. The pixels are
shown in pseudo-colours. Neighbourhood size is 3 � 3.
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NðXj�;ΣÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞDjΣj

q exp

�
� 1

2
ðX� �ÞT Σ�1ðX� �Þ

�
(9)

has an analytic entropy32

HΣ ¼
1

2
log
�
ð2peÞDjΣj

�
(10)

Substituting equation (10) into (5), the mutual informa-

tion can be simplified to

I ¼ 1

2
log

jΣX1
jjΣX2

j
jΣðX1 ;X2Þj

� �
(11)

It demonstrates that the calculation of RMI could be

largely reduced if the simplified considerations are appropri-

ate for the sonar image. We will discuss it in the next section.

Peripheral mutual information

The multidimensional normal distribution made in equations

(9) to (11) is hardly justified, because the data can be seen as

a time-shifting serial, then all the dimensions are strongly

correlated and almost follow the same distribution. How-

ever, the data space could be well accommodated by a multi-

dimensional Gauss distribution if the following two

conditions could be satisfied: (i) the data in each dimension

are approximately normally distributed and (ii) the different

dimensions are independent of each other. The following

two subsections are devoted to test and fulfil the conditions.

Normal distribution assumption

The normal distribution assumption can be validated if the

intensity histogram of the sonar image can be well-fitted by

a single Gauss function.

The histogram can be approximated by a mixture Gauss

model (MGM),15

GðxÞ ¼
XK

k¼1

1ffiffiffiffiffiffi
2p
p

sk

exp �ðx� �kÞ
2

2s2
k

 !
(12)

where the mixture parameters can be determined by an

expectation–maximization algorithm33 and K is the num-

ber of Gauss components. The fitting error is determined by

the complexity of the mixture model, with a larger number

of Gauss components improving the precision at the cost of

computation time. There is no simple way to set the number

of Gauss components. Here, it is heuristically determined

by the Bayesian information criterion (BIC) rule34

BIC ¼ logð"2Þ þ Q
logN

N
(13)

where " is the fitting error between the intensity histogram

and the fitted curve, N is the size of the data, and the

parameters number Q ¼ 3K � 1. Note that the

multiplication by 3 is in place because there are three para-

meters for each component, that is, the prior probability,

mean and covariance. Subtraction of 1 is because the sum

of the prior probabilities is equal to 1.

An example for MGM fitting to the histogram of a

sonar image is shown in Figure 2. There is a rapid drop

at K ¼ 3 in the BIC curve as shown in Figure 2(b), which

demonstrates that the histogram plotted in Figure 2(a)

should be described by no more than K ¼ 2 Gauss com-

ponents. On the other hand, the decrement at K ¼ 2 is so

small that the histogram could be approximated by a sin-

gle Gauss function.

The Gauss function mainly captures the intensity distri-

bution of the background pixels. Note that the largest fitting

error appears at around 0:05 (see Figure 2(a)). In fact, such

pixels with low intensity are mainly from the shadow areas,

which only take a very low proportion in the sonar image

when compared with the broad background areas.
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Figure 2. Quality of the Gaussian approximation for sonar
images. (a) The histogram of an image (black solid line) is fitted by
a single Gaussian component (red dashed line). (b) The number of
Gaussian components is determined by the BIC curve. See the
text for details. BIC: Bayes information criterion.
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It should be noted that the assumption of a normal

distribution would be obviously violated if the insonified

seabed area does not cover the entire sonar image. The

hollow areas before the leading edge or after the trailing

edge35 are filled with random noise with an intensity dis-

tribution that is very similar to that of the shadow areas.

These darker pixels generate a large peak that is different

from the one that is generated by the background pixels.

Thus, the histogram can no longer be described by a single

Gaussian component. Therefore, the scene coverage

should be maximized by setting the sonar altitude and

grazing angle.

Independence condition

Two variables x and y are independent if the joint prob-

ability is equal to the product of the marginal probabilities,

pðx; yÞ ¼ pðxÞpðyÞ. The pixels in a local region are partially

dependent on each other, which obviously violates the

independence condition.

In statistics, the w2 test can be used to measure the inde-

pendence between two variables. Now that the variables are

not independent, we use the relative value

F̂ij ¼
Fij

max
k;l¼1;...;D

ðFklÞ
(14)

to measure the dependency between variables, where F

denotes the basic w2 test value.36

An example for the relative association for neighbouring

pixels is shown in Figure 3. The joint intensity distribution

between the centre pixel xð0;0Þ and a third-order neighbour

xð0;�1Þ is strongly diagonal (Figure 3(a)), demonstrating

strong correlation between the central pixel and its

second-order neighbours. The joint distribution of the cen-

tral pixel and a third-order neighbour xð�2;�2Þ is randomly

scattered (Figure 3(b)). It demonstrates that the dependence

of xð0;0Þ on xð0;�1Þ is far larger than it on xð�2;�2Þ. The

association values between all the pixels from an image

region and its counterpart in another image are shown in

Figure 3(c). It can be seen that each pixel is strongly asso-

ciated with its neighbours, which supports the Markov

assumption.12,30,31

For the third-order neighbours, to reduce the associa-

tions between variables as much as possible, only the four

peripheral pixels that are located in the corners (refer to the

top and right panel of Figure 3(c)) are used to calculate the

regional information. Another heuristic strategy, which is

also very important for the proposed method, is that the

centre pixel is abandoned to further support the indepen-

dence assumption. Now that the regional information is

solely dependent on the outermost pixels, we named it as

peripheral mutual information.

The strategy for selecting peripheral pixel applies to

different neighbourhood sizes. In Figure 3(d), we display

the peripheral pixel configuration for different neighbour

radius, that is, r ranges from 1 to 5. Given the radius r, the

four pixels that are furthest from the centre pixel, that is,

with a block distance 2r, are used to calculate the mutual

information.

The detailed PMI-based sonar image registration

method is listed in Algorithm 1. It should be noted that

other interpolation strategies may obtain much smoother

registration function, but for simplicity, only the simple

nearest neighbour method is used in step 4.

Experiments

Two data sets are used to test the performance of the

proposed PMI method. Both were collected by a DIDSON

sonar when the underwater vehicle operated close to the

seabed, where GPS signals are not accessible. Further-

more, the inertial navigation information is unavailable

in both cases.

The first data set was taken by the DIV Group37 with

a DIDSON sonar during a pipeline burying mission on

the seabed. Screenshots from a screen monitoring the

sonar images were compressed into a video stream that

lasts 16 s and includes 377 frames. The imaging distance

is about 2.5 m.

The second data segment was collected by an autono-

mous underwater vehicle (AUV) developed by the Center

of Marine Information Technology and Equipment, She-

nyang Institute of Automation, Chinese Academy of

Sciences. The altitude of the AUV was set to be 7 m, which

is farther than that of the pipeline burying machine. The

elevation angle of the DIDSON sonar is 45� below the

horizontal plane. Therefore, the imaging area is about 10

m away from the sonar header. The video shot lasts 10 s and

includes 240 frames.

We use four experiments to test the performance of the

PMI maximization on sonar image registration. In the first

Algorithm 1. Peripheral mutual information.

1: Input the floating image f and reference image g, set the
neighbour radius r.

2: Initialize the parameter set Θ, set t ¼ 0.
3: while jjΔΘjj < � do
4: Transform f to f

0
by the current parameter set ΘðtÞ. To

simplify the calculation, the nearest neighbour interpolation
method is used to deal with the fractional coordinates.

5: For each pixel s ¼ ðr; cÞ, concatenate the four peripheral
pixels in the ðr þ 1Þ-st order neighbourhood in f

0
according

to Figure 3(d) to a column vector X1. Construct X2 with the
corresponding pixels in g with the same procedure.

6: Calculate the mutual information I by equation (11).
7: Search a local extreme with Powell’s multidimensional

direction set method.
8: Update the parameter set Θðtþ1Þ and the direction set.
9: t ¼ t þ 1.

10: end while
11: Stitch the image.
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experiment, we try to determine the neighbourhood radius

by examining the relationship between the registration

function of the proposed PMI and the neighbourhood size.

The second experiment is designed to test its feasibility in

image registration and examine the smoothing feature of

the registration function. The latter two experiments are

used to test its performance on the two real image

sequences, with the first aiming at a comparison to other

methods and the second testing its effectivity for fully

unstructured environments.

Neighbourhood size

The inclusion of spatially neighbouring information

enhances the robustness of the similarity measure in image

registration.25 With increasing neighbourhood radius, the

peripheral pixels tend to be randomly distributed, which

supports the independence assumption. However, the

neighbourhood radius cannot be arbitrarily large, because

the mutual information (11) decays with distance. There-

fore, an appropriate range for the neighbourhood radius
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should be determined as a compromise between feasibility

of association and suppression of randomness.

In Figure 4, we show the registration functions for a

typical sonar image pair matching when the neighbourhood

radius r ranges in f0; 1; 2; 3; 9; 15g. Note that for r ¼ 0, the

block turns to a single pixel, such that the mutual informa-

tion depends only on the covariance of a pixel and its

counterpart in the other image.

The neighbourhood radius is determined by evaluating

the smoothness and the height gap of the registration func-

tions. Though the registration function for r ¼ 0 is

smoother than others, no spatial information is included

in similarity measure. If r is very large, that is, r ¼ 9 or

15, then large vibrations along the registration function

occur. In addition, for large r, many blocks would be dis-

carded due to the boundary effects.

On the other hand, the height gap of the registration

functions for r ¼ 2 or r ¼ 3 is far larger than that of

others. Take the registration functions displayed in

Figure 4 for example. When r ¼ 2 or r ¼ 3, the height

gap is ð0:35; 0:45; 3:20Þ and ð0:80; 0:30; 1:80Þ, respec-

tively. However, when r ¼ 0; 1; 9; 15, it drops to

ð0:09; 0:16; 0:80Þ, ð0:25; 0:33; 1:40Þ, ð0:19; 0:30; 1:20Þ
and ð0:25; 0:35; 1:15Þ, respectively. A steeper energy

boundary tends to increase the convergence speed of

the minimization procedure for the mutual information

towards local minima. According to our testings and

simulations, a better registration precision and a faster

convergence speed can be obtained for the mutual infor-

mation maximization procedure in the case of r ¼ 2.

Therefore, in the following experiments, we empirically

set the neighbourhood radius to this value.

Estimate the known sonar image pairs

Because of the missing inertial navigation information, it is

impossible for us to evaluate the motion parameters that are

estimated from the image pairs by comparing them with the

physical movement of the underwater vehicle. Instead, an

alternative scheme, where the floating image is trans-

formed from the reference image with a known parameter

set, is proposed to test the precision of the proposed sonar

image registration method. In total, 137 sonar frames are

randomly selected from the videos as the reference images.

Each frame is transformed into 9 floating images with a

randomly generated parameter set which provides us with

1233 sonar image pairs. Then, we use several methods to

estimate the transformation parameters, including

PV-based mutual information22 and its revisions that

include the gradient information (gradPV),23 GPVE,24

RMI25 and the proposed PMI. To test whether RMI is

feasible for higher-order neighbourhoods, we set the neigh-

bourhood radius r to 1 and 2 and checked the estimation

precision. The parameters are all initialized by zeros.

To narrow down the search range, the maximum hori-

zontal and vertical translation parameters are limited to

10 pixels, that is, Δx;Δy 2 ½�10; 10�. The maximum rota-

tion angle is also limited to 10�, that is, Δ� 2 ½�10� ; 10��. It

is worth mentioning that a multi-resolution procedure

would be appropriate for the optimization procedure if it

has to be assumed that the translation and the rotation para-

meters exceed these values.

Precision

Powell’s search method is used to prevent the mutual infor-

mation becoming trapped in local minima. The precision of

the parameter estimation is largely determined by the

robustness of the search method. In essence, Powell’s

method tries to accelerate the converging speed by con-

structing a set of conjugate directions, which is further

determined by the local minimum that is reached with the

current direction set.

To search for local minima in every direction, we use

Brent’s one-dimensional line minimization procedure. It

is based on parabola-shaped pitfalls that reside in

½Θ0;Θ2� along each direction and which have to be

located at first. This implies that we have to find three

points Θ0, Θ1 ¼ Θ0 þ �1dV and Θ2 ¼ Θ1 þ �2dV along

the direction dV , such that MIðΘ0Þ � MIðΘ1Þ and

MIðΘ2Þ � MIðΘ1Þ, where �1 and �2 are two constants

determined by the searching procedure. However, there

are many local minima along the registration curves (see

Figure 5). A strategy is adopted to help the mutual

information escape the local minima. The searching

step will continue if MIðΘ2Þ � ð1þ "ÞMIðΘ1Þ and

maxj¼1;2;3ðΘ j
1 � Θ j

2Þ < 10, where " is set to be 0.05

empirically, the superscript j stands for the dimension.

An example for motion parameters estimation is pre-

sented in Table 1. It can be seen that the proposed PMI

method and the GPVE method are more accurate than other

methods. The average estimation precision for each method

is displayed in Table 2.

Three conclusions can be drawn at this point. Firstly,

GPVE obtains best performance in the methods that depend

on the histogram and interpolation, while the proposed PMI

method performs best in the RMI methods. PMI is compa-

rable to the GPVE method as both use mean error and

variance. However, as discussed above, the main advantage

of RMI is its ability to register high-dimensional data with-

out the histogram calculation and pixel interpolation. Sec-

ondly, the estimation results for RMI (r ¼ 2) are almost

catastrophic, which demonstrate that it is inappropriate to

incorporate a second-order neighbourhood into RMI.

Thirdly, there is a larger improvement in the estimation

precision of PMI over RMI. Though a large effort should

be made to the RMI, the initial experiment tells that an

appropriate neighbour selection strategy is helpful for the

mutual information calculation.

There is a further problem related to precision. Even the

best method (GPVE here) occasionally has a large bias

(data not shown). It is perhaps due to the speckle noise
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horizontal axis; middle column: translation along horizontal axis; right column: rotation around sonar head. From top to bottom, the
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Figure 5. Registration functions for a sonar image pair. Left column: translation along vertical and horizontal axis; middle column:
translation along horizontal axis; right column: rotation around the sonar head. From top to bottom: PV, gradPV, GPVE, RMI (r ¼ 1),
RMI (r ¼ 2) and PMI. Initial parameters are Δy ¼ �1, Δx ¼ �2 and Δ� ¼ 0:5. gradPV: gradient information; GPVE: generalized partial
volume estimation; RMI: regional mutual information; PMI: peripheral mutual information; PV: trilinear partial volume distribution.
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which affects acoustic echoes and weakens the correlation

between corresponding pixels.

Registration function

It is necessary to analyse the mechanism that underlies the

mutual information maximization by examining the regis-

tration function of different methods. For example, a floating

sonar image f is transformed from the reference image g

with a known parameter set Θ ¼ f1;�2;�1g, the dimen-

sions of which correspond to Δy, Δx and Δ�, respectively.

The estimation results are listed in Table 1. For the

registration methods that are based on mutual information,

the opportunity to find the global optimum is largely deter-

mined by the registration function. Therefore, those meth-

ods that derive the joint and marginal probabilities from the

joint histogram have tried to construct a smoother registra-

tion function by different kinds of heuristic strategies in

pixel interpolation.22–24,27 However, the RMI methods, that

is, RMI and the proposed PMI, directly incorporate the

neighbouring information into the mutual information by

a closed-form approximation to the Gauss–Shannon

entropy. It is necessary to check that if the registration

function in the RMI methods also has a smooth registration

function, because all the methods depend on the same opti-

mization procedures.

In Figure 5, we plot the registration functions when

translation and rotation happen. The initial parameter set-

ting is Θ ¼ f�1;�2; 0:5g. The three columns, from left to

right, represent the horizontal translation, the lateral trans-

lation and the rotation around the vertical axis, respec-

tively. Each row corresponds to the registration functions

of a special method. Three conclusions can be drawn from

Figure 5.

Firstly, there are many local minima in the translation

dimensions (see the first row to the third row in Figure 5)

for the histogram-based methods. In the absence of the

rotation, the interpolation is equivalent to the reallocation

of weights, leading to a temporary increase in mutual

information. However, the dithering effects are sup-

pressed by the step effects of the RMI methods, because

all the weights jump between 0 and 1 synchronously in the

case of nearest neighbour interpolation. That is, the

mutual information keeps fixed for fractional translation.

When the robot makes a turn, the step effects in the reg-

istration functions of RMI and PMI disappear, because the

synchronism no longer exists. The step effects of RMI

(r ¼ 2) aggravate to the sawtooth effects, which show

again that the second-order neighbourhood is a tragedy

for the RMI.

Secondly, the registration function of RMI (r ¼ 2) does

not behave as a pitfall (see the fifth row of Figure 5), which

demonstrates that the second-order neighbourhood is inap-

propriate for the RMI.

Lastly, the registration function of the proposed PMI has

a very steep valley, which indicates that the proposed PMI

method has the potential to converge with a faster speed.

Indeed, PMI converges in three to five iterations in our

simulations.

Fourthly, it is astonishing to find that the registration

curve of PMI is not only far smoother than that of RMI but

also comparable to that of GPVE. Recall that GPVE makes

use of luxury spline interpolation to extend the neighbour-

hood and construct the joint histogram, whereas PMI only

depends on the simple nearest neighbour interpolation. It

indicates that the peripheral pixels are sufficient to measure

the mutual information on one hand. On the other hand, the

PMI method has the potential to obtain a comparative

Table 1. Estimate motion parameters for a known sonar image pair with different mutual information methods.

Estimation True parameters PV Gradient þ PV GPVE RMI (r ¼ 1) RMI (r ¼ 2) PMI (d ¼ 2)

Δy �2 �2.0466 �2.9957 �2.0230 �2.9957 �3.2853 �2.0041
Δx 5 4.4669 5.0072 4.8955 5.0072 1.9386 4.8881
Δ� 5 4.7356 4.9835 4.9839 4.9835 4.9721 4.9836

GPVE: generalized partial volume estimation; PV: trilinear partial volume distribution; RMI: regional mutual information; PMI: peripheral mutual
information.

Table 2. Average estimation error for different mutual information methods.

Error Δy Δx Δ�

PV 0:1868+0:5183 �0:6906+1:6265 �0:2060+0:4404
Gradient þ PV �0:0267+0:5758 �2:1243+4:2030 �0:5648+1:1404
GPVE �0:0146+0:0168 �0:0187+0:0955 �0:0026+0:0239
RMI (r ¼ 1) �0:1994+0:9072 0:2855+1:5136 �0:0388+0:2909
RMI (r ¼ 2) �0:1641+2:2336 �0:1571+2:4954 �0:0329+0:1228
PMI (d ¼ 2) �0:0048+0:0298 0:0670+0:1887 0:0294+0:0486

GPVE: generalized partial volume estimation; PV: trilinear partial volume distribution; RMI: regional mutual information; PMI: peripheral mutual
information.
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registration performance with the traditional histogram-

based methods.

Lastly, the sawtooth effects in the registration function

gradPV (second row in Figure 5) show that the gradPV is

an incredible feature for the underwater sonar image.

It is worthy to note that there are local minima along the

registration curves. A small perturbation will help the

mutual information escape the local minima. On the other

hand, the motion information from other sensors, like the

odometer, will surely help the optimization procedure find

the optimum more quickly.

Sonar image registration (1): Pipeline burying

In this experiment, we try to register the sonar frames

from the pipeline burying data set with different methods.

The data were collected when the underwater vehicle was

laying the pipeline on the seabed. To reduce the computa-

tion cost, the registration starts only when the average

intensity difference between the two images exceeds a

threshold T . We have chosen the value T ¼ 0:02. The

only exception is NDT, where T ¼ 0:01, because the gra-

dient descent method is inappropriate for estimating the

larger motion parameters.

Experimental setting

According to the first experiment, the third-order neigh-

bourhood (r ¼ 2) is inappropriate for the RMI method and

the gradPV should be abandoned for sonar images. There-

fore, among the mutual information methods that are dis-

cussed above, only the PV, GPVE, RMI (r ¼ 1) and PMI

are selected for evaluation in the current simulations.

On the other hand, as described in the Introduction, the

NDT method and the FMT method have been adopted by

Aykin and Negahdaripour14 and Hurtós,18,20 respectively,

to register 2D forward-looking sonar images. Further, the

SIFT feature points38 have been widely accepted as the

most robust and discriminative features for the images

that are taken in the structured or semi-structured envi-

ronment,21 such as the seabed working range. Therefore, it

is necessary to compare the performance of the proposed

PMI method with FMT, NDT and SIFT-based image

matching methods.

For the FMT method, we strictly follow the method

suggested by Hurtós et al.20 to register the sonar images.

The rotation angle is estimated by locating the maximum of

the phase correlation matrix between f and g in polar coor-

dinates, while the translation parameters are estimated by

locating the maximum of the phase correlation matrix

between the angle-compensated floating image f� and the

reference image g in Cartesian coordinates. Note that the

histogram equalization is adopted to enhance the high-

frequency information.

To apply the NDT method, a preprocessing procedure

that is similar to the one suggested by Aykin and

Negahdaripour14 has been designed to extract the feature

areas. Because the shadows are often the most salient and

robust features in underwater sonar images, we extract the

shadow areas as the candidate blobs with the method

described by Hsieh et al.39 For concave shadow blobs that

cannot be modelled appropriately by a Gauss distribution, a

clump splitting method40 is adopted to segment them into

convex sub-blocks.

The SIFT feature points are extracted by the code pro-

vided by Lowe.41

Comparison between mutual information methods

The image registration performances between different

mutual information methods are compared at first.

Initially, the local immediate registration error is

evaluated by registering an image pair. The results are

shown in the top row of Figure 6(a) to (d). The two

original images are shown in red and green, respec-

tively. Therefore, the perfectly aligned pixels appear in

yellow. It is convenient to qualitatively compare their

performance by observing the proportion of red or green

pixels in the overlapping region, especially along the

edges of objects or shadows. It can be seen that the

proposed PMI has a very similar performance as that

of the GPVE method. Both of them are superior to the

PV and RMI (r ¼ 1) methods.

The differences between the estimated registration para-

meters between different methods are so small that it is

very hard to evaluate the performance by the immediate

error. Local registration errors will be accumulated rapidly

if consecutive frames are registered to form a panoramic

view. The panoramic image soon becomes blurred if the

local error is very large. Therefore, the registration preci-

sion can be observed by watching the edges and details in

the global image.

In the third row of Figure 6 (from Figure 6(h) to (k)), we

show the panoramic images when five consecutive frames

are registered. It can be seen that the top half of the panora-

mic image that is generated by the PV method is so blurred

that it turns to a uniform region. A large number of details

are lost in the averaging step. Intuitively, PMI and GPVE

almost have an equivalent performance.

The residual error, which is defined as the mean energy

difference between the transformed floating image fΘ� and

the reference image g in the overlapping area O

r ¼ 1

jjOjj
X
ði;jÞ2O

j fΘ� ði; jÞ � gði; jÞj (15)

is adopted to describe the registration precision, where jjOjj
is the pixel number in the overlapping area.

The residual errors between the five sequential sonar

frames are displayed in Table 3. It can be seen that the

proposed PMI method is even better than the GPVE

method in the estimation precision. It is indeed that the

12 International Journal of Advanced Robotic Systems



Figure 6. Registration of a sonar image sequencewith the mutual information methods. For the first and the third row, from left to right, the
columns correspond to PV, GPVE, RMI (r ¼ 1) and PMI, respectively. For the second row and the bottom row, the columns correspond to
FMT, NDT and SIFT, respectively. The image pair registration (#01 and#21) is shown in the top two rows, where the two images are shown
in red and green, respectively, and the correct alignment is shown in yellow. The accumulated error is observed by registering five
consecutive frames in the bottom two rows. Note that 12 frames are used in the NDT method, see text for details. Global error adjustment
is outside the scope of this article. GPVE: generalized partial volume estimation; RMI: regional mutual information; PMI: peripheral mutual
information; PV: trilinear partial volume distribution; FMT: Fourier–Mellin transform; NDT: normal distribution transform; SIFT: scale-
invariant feature transform.
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bottom half of Figure 6(k) has clearer edge information and

preserves more details compared to Figure 6(i).

Comparison to other methods

Finally, we show the results obtained by the FMT, NDT

and SIFT-based methods. The sonar image pair registration

results are shown in Figure 6(e) to (g) (second row), and the

consecutive image sequence stitching results are shown in

Figure 6(l) to (n) (bottom).

The proposed PMI method has a performance compara-

tive to the SIFT-based method. However, the SIFT feature

point extraction algorithm is feasible for image registration

only when there is clear, high-frequency information. As

discussed by Negahdaripour et al.,11 such information is

absent in many natural environments.

The precision of FMT depends on the resolution of the

sonar image. The size and resolution of the sonar frames in

the pipeline burying data set is far lower than the practical

DIDSON sonar image. When calculating the rotation angle

in the polar coordinates, the error that is related to a single

pixel is about 2 degrees, leading to the rapid growth of the

accumulated error. A subpixel estimation is helpful for

controlling the registration error; however, it is limited to

translation effects at present.42

NDT pursues the local minima by the computation-

exhaustive gradient descent method, which might impede

its application in the practical engineering. At first, NDT

has a tendency towards underestimation, because the Gauss

model is able to smooth the contour of each blob, which is

more appropriate to describe the motion tendency approx-

imately. Secondly, since NDT is optimized by the Gauss–

Newton gradient descent strategy,43 it relies on an inverse

of the Hessian matrix which may cause instability in the

optimization process, which is hardly alleviated by the

Levenberg–Marquardt method.44 Therefore, it is unlikely

that NDT converges to the global minimum. Thirdly, NDT

is computationally expensive, because a normal distribu-

tion distance has to be calculated for each pixel in each

iteration. Lastly, it is nontrivial to choose an appropriate

learning rate. With a smaller learning rate, it would take a

very long time for the optimization procedure to converge

to the local minima. Inverse, a larger learning rate is very

likely to bring in oscillations to the iteration steps.45

Sonar image registration (2): Unstructured
environment

The pipeline burying field can be seen as a structured envi-

ronment, where abundant corner points, edges or shadow

blobs could be extracted to support the feature matching.

However, such a flourishing situation seldom happens on

the natural sea floor. On the other hand, a large number of

local features would be invisible if the object is far away

from the sonar header. In Figure 7(g), we show two sequen-

tial sonar frames from the second data set, which are taken

from the natural seabed with an imaging distance of 9 m.

Only three SIFT feature point pairs could be extracted

using the code provided by Lowe,41 leading to an under-

determined system of equations that is infeasible for the

motion parameters estimation. Such a dilemma is hardly

alleviated even if we remove the Gaussian noise with a

median filter in the preprocessing stage.

It is only necessary for us to register the illuminated

area because it takes up a very small part of the whole

sonar frame. The region of interest can be obtained by

segmenting the average illumination pattern with an

appropriate threshold.19 The stitching results of 10 con-

secutive sonar frames for the PV, GPVE, RMI (r ¼ 1),

PMI, FMT and NDT methods are displayed in Figure

7(a) to (f), respectively. The corresponding residual

errors are shown in Table 4.

There is no significant difference in the residual error

between the proposed PMI method and other methods that

are based on mutual information maximization. The under-

lying reason may be that the sonar frame is dominated by

the background pixels. The slight change in motion para-

meter is not able to bring in the remarkable variation in the

mutual information. The fact also explains that though the

residual error of PMI is smaller than other methods, the

panoramic image shown in Figure 7(d) appears more

blurred than others.

Unstructured environment also challenges the appli-

cation of the FMT and NDT methods. The faintness in

the high frequency information, which is mainly gener-

ated by the sparse and blurred edges, degrades the

impulse intensity in the Fourier domain or the Fourier

log-magnitude domain, hindering the precise location of

the translation and rotation parameters with the FMT

method (Figure 7(e)).

Table 3. Residual errors for the image sequence registration in Figure 6.

Residual PV GPVE RMI (r ¼ 1) PMI FMT NDT SIFT

ð#01;#21Þ 0.0297 0.0266 0.0275 0.0251 0.0323 0.0360 0.0246
ð#21;#32Þ 0.0367 0.0342 0.0388 0.0309 0.0572 0.0380 0.0321
ð#32;#40Þ 0.0393 0.0452 0.0416 0.0276 0.0386 0.0378 0.0289
ð#40;#49Þ 0.0314 0.0311 0.0330 0.0297 0.0410 0.0306 0.0298
Average 0.0343 0.0343 0.0352 0.0283 0.0423 0.0356 0.0289

GPVE: generalized partial volume estimation; PV: trilinear partial volume distribution; RMI: regional mutual information; PMI: peripheral mutual
information; FMT: Fourier–Mellin transform; NDT: normal distribution transform; SIFT: scale-invariant feature transform.
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To some extent, the precision of NDT depends on the

blob extraction methods. Similarly, the slight change in the

insonification pattern and incidence angle brings large

uncertainties in the region boundaries, bringing huge dis-

turbance to the normal distribution modelling and the

sequential optimization procedure. Comparing Figure 7(f)

and Figure 6(m), it can be seen that the motion parameters

can be better estimated if there are a large number of fea-

ture areas in the case of blurred images.

Conclusion

In this article, we propose the PMI method for registering 2D

forward-looking sonar images. PMI is inspired by RMI but

differs in that only the outermost neighbours are used to calcu-

late the Gaussian–Shannon entropy. The method provides an

improved solution for the sonar image registration problem,

where RMI cannot be applied for the higher order neighbour-

hoods due to the violation of normal distribution assumption.

Figure 7. Registration of 10 sequential sonar frames that are acquired from a natural sea floor. (a) to (f) Correspond to PV, GPVE, RMI
(r ¼ 1), PMI, FMT and NDT, respectively. SIFT method is infeasible here, because too few feature points were identified. For example,
only three SIFT feature point pairs could be extracted in (g). Note that the seabed is 9 m away from the sonar header. For simplicity,
only the illuminated area is considered for registration. GPVE: generalized partial volume estimation; RMI: regional mutual information;
PMI: peripheral mutual information; PV: trilinear partial volume distribution; FMT: Fourier–Mellin transform; NDT: normal distribution
transform; SIFT: scale-invariant feature transform.

Table 4. Residual errors for the image sequence registration in Figure 7.

Methods PV GPVE RMI (r ¼ 1) PMI FMT NDT SIFT

Average error 0.0356 0.0347 0.0348 0.0341 0.0359 0.0356 –

GPVE: generalized partial volume estimation; PV: trilinear partial volume distribution; RMI: regional mutual information; PMI: peripheral mutual
information; FMT: Fourier–Mellin transform; NDT: normal distribution transform; SIFT: scale-invariant feature transform.
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Our experimental results illustrate that PMI not only

behaves better than the RMI method but also has a perfor-

mance that is superior to the traditional histogram-based

mutual information methods. Furthermore, PMI is attrac-

tive in several other aspects:

Firstly, PMI calculates the mutual information with a

closed-form solution that depends only on the covariance

matrix between pixels. This means that there is no need to

construct a joint intensity histogram, reducing memory

requirements of the algorithm. On the other hand, PMI only

needs to calculate the covariance matrix with the outermost

neighbours, largely reducing the computation costs.

Secondly, PMI does not require an elaborate interpola-

tion function, because even the simple nearest-neighbour

interpolation method is able to obtain a smoother registra-

tion function.

Thirdly, PMI has a smoother registration function,

which means that it is largely possible to converge to global

optimum. Furthermore, the gradient around the local min-

imum in the registration function of PMI is very steep,

which means that it is able to converge with a faster speed.

Lastly, PMI can be used to register cross-dimension

sensor data, which is the incentive of designing the RMI

methods. Theoretically speaking, it is possible to register

data with any dimensions, because PMI executes in a very

simple mode: extracts the peripheral pixels of an image

region and its counterpart in another image, calculating the

covariance matrix and the Gauss–Shannon entropy. A work

on acousto-optic image registration will be reported in the

near future.

Underwater sonar image is prone to speckle noise,

which indicates that it lacks the general high-frequency

information. Mutual information maximization provides

us with a method to register the images that are sampled

from the fully unstructured underwater environment. Two

aspects will be focused in the next step. On the one hand,

we will try to find a better optimization strategy for PMI to

increase its robustness and registration precision. On the

other hand, we will try to reduce the accumulated error in

the framework of mutual information.
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