2,852 research outputs found

    Vibration suppression in a large space structure

    Get PDF
    The Yale University Center for Systems Science and the NASA Johnson Space Center collaborated in a study of vibration suppression in a large space structure during the period January 1985 to August 1987. The research proposal submitted by the Center to NASA concerned disturbance isolation in flexible space structures. The general objective of the proposal was to create within the Center a critical mass of expertise on problems related to the dynamics and control of large flexible space structures. A specific objective was to formulate both passive and active control strategies for the disturbance isolation problem. Both objectives were achieved during the period of the contract. While an extensive literature exists on the control of flexible space structures, it is generally acknowledged that many important questions remain open at even a fundamental level. Hence, instead of studying grossly simplified models of complex structural systems, it was decided as a first step to confine attention to detailed and thorough analyses of simple structures

    Robust Adaptive Control

    Get PDF
    Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known

    Optimization for efficient structure-control systems

    Get PDF
    The efficiency of a structure-control system is a nondimensional parameter which indicates the fraction of the total control power expended usefully in controlling a finite-dimensional system. The balance of control power is wasted on the truncated dynamics serving no useful purpose towards the control objectives. Recently, it has been demonstrated that the concept of efficiency can be used to address a number of control issues encountered in the control of dynamic systems such as the spillover effects, selection of a good input configuration and obtaining reduced order control models. Reference (1) introduced the concept and presented analyses of several Linear Quadratic Regulator designs on the basis of their efficiencies. Encouraged by the results of Ref. (1), Ref. (2) introduces an efficiency modal analysis of a structure-control system which gives an internal characterization of the controller design and establishes the link between the control design and the initial disturbances to affect efficient structure-control system designs. The efficiency modal analysis leads to identification of principal controller directions (or controller modes) distinct from the structural natural modes. Thus ultimately, many issues of the structure-control system revolve around the idea of insuring compatibility of the structural modes and the controller modes with each other, the better the match the higher the efficiency. A key feature in controlling a reduced order model of a high dimensional (or infinity-dimensional distributed parameter system) structural dynamic system must be to achieve high efficiency of the control system while satisfying the control objectives and/or constraints. Formally, this can be achieved by designing the control system and structural parameters simultaneously within an optimization framework. The subject of this paper is to present such a design procedure
    corecore