94 research outputs found

    Symmetry energy and the isoscaling properties of the fragments produced in 40^{40}Ar, 40^{40}Ca + 58^{58}Fe, 58^{58}Ni reactions at 25 −- 53 MeV/nucleon

    Full text link
    The symmetry energy and the isoscaling properties of the fragments produced in the multifragmentation of 40^{40}Ar, 40^{40}Ca + 58^{58}Fe, 58^{58}Ni reactions at 25 - 53 MeV/nucleon were investigated within the framework of statistical multifragmentation model. The isoscaling parameters α\alpha, from the primary (hot) and secondary (cold) fragment yield distributions, were studied as a function of excitation energy, isospin (neutron-to-proton asymmetry) and fragment symmetry energy. It is observed that the isoscaling parameter α\alpha decreases with increasing excitation energy and decreasing symmetry energy. The parameter α\alpha is also observed to increase with increasing difference in the isospin of the fragmenting system. The sequential decay of the primary fragments into secondary fragments, when studied as a function of excitation energy and isospin of the fragmenting system, show very little influence on the isoscaling parameter. The symmetry energy however, has a strong influence on the isospin properties of the hot fragments. The experimentally observed scaling parameters can be explained by symmetry energy that is significantly lower than that for the ground state nuclei near saturation density. The results indicate that the properties of hot nuclei at excitation energies, densities and isospin away from the normal ground state nuclei could be significantly different.Comment: 14 pages, 15 figure

    Nuclear expansion and symmetry energy of hot nuclei

    Full text link
    The decrease in the symmetry energy of hot nuclei populated in 58^{58}Ni + 58^{58}Ni, 58^{58}Fe + 58^{58}Ni and 58^{58}Fe + 58^{58}Fe reactions at beam energies of 30, 40, and 47 MeV/nucleon, as a function of excitation energy is studied. It is observed that this decrease is mainly a consequence of increasing expansion or decreasing density rather than the increasing temperature. The results are in good agreement with the recently reported microscopic calculation based on the Thomas-Fermi approach. An empirical relation to study the symmetry energy of finite nuclei in various mass region is proposed.Comment: 10 pages, 2 figure

    Sensitivity of intermediate mass fragment flows to the symmetry energy

    Get PDF
    The NIMROD-ISiS array was used to study the transverse flow of intermediate mass fragments in 35 MeV/nucleon 70Zn+70Zn{}^{70}\mathrm{Zn}+{}^{70}\mathrm{Zn}, 64Zn+64Zn{}^{64}\mathrm{Zn}+{}^{64}\mathrm{Zn}, and 64Ni+64Ni{}^{64}\mathrm{Ni}+{}^{64}\mathrm{Ni} reactions. The intermediate mass fragment flow was previously shown to be sensitive to the density dependence of the symmetry energy. To explore the model dependence of the results, the antisymmetrized molecular dynamics, constrained molecular dynamics, and stochastic mean-field models were each compared to the experimental results to extract information on the form of the symmetry energy. The results demonstrate that sensitivity of the models to the nuclear equation of state can vary significantly based on the treatment of the nuclear dynamics. Despite the differences in the sensitivity, improved agreement with the experimental data is observed for each model with a stiff density dependence of the symmetry energy

    Analysis of fragment yield ratios in the nuclear phase transition

    Get PDF
    The critical phenomena of the liquid-gas phase transition has been investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon using the Landau free energy approach with isospin asymmetry as an order parameter. Fits to the free energy of fragments showed three minima suggesting the system to be in the regime of a first order phase transition. The relation m =-{\partial}F/{\partial}H, which defines the order parameter and its conjugate field H, has been experimentally verified from the linear dependence of the mirror nuclei yield ratio data, on the isospin asymmetry of the source. The slope parameter, which is a measure of the distance from a critical temperature, showed a systematic decrease with increasing excitation energy of the source. Within the framework of the Landau free energy approach, isoscaling provided similar results as obtained from the analysis of mirror nuclei yield ratio data. We show that the external field is primarily related to the minimum of the free energy, which implies a modification of the source concentration \Delta used in isospin studies

    Neutron to proton ratios of quasiprojectile and midrapidity emission in the 64^{64}Zn + 64^{64}Zn reaction at 45 MeV/nucleon

    Get PDF
    Simultaneous measurement of both neutrons and charged particles emitted in the reaction 64^{64}Zn + 64^{64}Zn at 45 MeV/nucleon allows comparison of the neutron to proton ratio at midrapidity with that at projectile rapidity. The evolution of N/Z in both rapidity regimes with increasing centrality is examined. For the completely re-constructed midrapidity material one finds that the neutron-to-proton ratio is above that of the overall 64^{64}Zn + 64^{64}Zn system. In contrast, the re-constructed ratio for the quasiprojectile is below that of the overall system. This difference provides the most complete evidence to date of neutron enrichment of midrapidity nuclear matter at the expense of the quasiprojectile

    Analysis of fragment yield ratios in the nuclear phase transition

    Get PDF
    The critical phenomena of the liquid-gas phase transition has been investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon using the Landau free energy approach with isospin asymmetry as an order parameter. Fits to the free energy of fragments showed three minima suggesting the system to be in the regime of a first order phase transition. The relation m =-{\partial}F/{\partial}H, which defines the order parameter and its conjugate field H, has been experimentally verified from the linear dependence of the mirror nuclei yield ratio data, on the isospin asymmetry of the source. The slope parameter, which is a measure of the distance from a critical temperature, showed a systematic decrease with increasing excitation energy of the source. Within the framework of the Landau free energy approach, isoscaling provided similar results as obtained from the analysis of mirror nuclei yield ratio data. We show that the external field is primarily related to the minimum of the free energy, which implies a modification of the source concentration \Delta used in isospin studies

    Investigation of transverse collective flow of intermediate mass fragments

    Get PDF
    The transverse flow of intermediate mass fragments (IMFs) has been investigated for the 35 MeV/u 70Zn+70Zn{}^{70}\mathrm{Zn}+{}^{70}\mathrm{Zn}, 64Zn+64Zn{}^{64}\mathrm{Zn}+{}^{64}\mathrm{Zn}, and 64Ni+64Ni{}^{64}\mathrm{Ni}+{}^{64}\mathrm{Ni} systems. A transition from the IMF transverse flow strongly depending on the mass of the system, in the most violent collisions, to a dependence on the charge of the system, for the peripheral reactions, is shown. This transition was shown to be sensitive to the density dependence of the symmetry energy using the antisymmetrized molecular-dynamics model. The results present an observable, the IMF transverse flow, that can be used to probe the nuclear equation of state. Comparison with the simulation demonstrated a preference for a stiff density dependence of the symmetry energy

    Transverse collective flow and midrapidity emission of isotopically identified light charged particles

    Get PDF
    The transverse flow and relative midrapidity yield of isotopically identified light charged particles (LCPs) has been examined for the 35 MeV/nucleon 70Zn+70Zn{}^{70}\mathrm{Zn}+{}^{70}\mathrm{Zn}, 64Zn+64Zn{}^{64}\mathrm{Zn}+{}^{64}\mathrm{Zn}, and 64Ni+64Ni{}^{64}\mathrm{Ni}+{}^{64}\mathrm{Ni} systems. A large enhancement of the midrapidity yield of the LCPs was observed relative to the yield near the projectile rapidity. In particular, this enhancement was increased for the more neutron-rich LCPs demonstrating a preference for the production of neutron-rich fragments in the midrapidity region. Additionally, the transverse flow of the LCPs was extracted, which provides insight into the average movement of the particles in the midrapidity region. Isotopic and isobaric effects were observed in the transverse flow of the fragments. In both cases, the transverse flow was shown to decrease with an increasing neutron content in the fragments. A clear inverse relationship between the transverse flow and the relative midrapidity yield is shown. The increased relative midrapidity emission produces a decreased transverse flow. The stochastic mean-field model was used for comparison to the experimental data. The results showed that the model was able to reproduce the general isotopic and isobaric trends for the midrapidity emission and transverse flow. The sensitivity of these observables to the density dependence of the symmetry energy was explored. The results indicate that the transverse flow and midrapidity emission of the LCPs are sensitive to the denisty dependence of the symmetry energy

    Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees

    Get PDF
    The radiation-attenuated Schistosoma mansoni vaccine is highly effective in rodents and primates but has never been tested in humans, primarily for safety reasons. To strengthen its status as a paradigm for a human recombinant antigen vaccine, we have undertaken a small-scale vaccination and challenge experiment in chimpanzees (Pan troglodytes). Immunological, clinical, and parasitological parameters were measured in three animals after multiple vaccinations, together with three controls, during the acute and chronic stages of challenge infection up to chemotherapeutic cure. Vaccination induced a strong in vitro proliferative response and early gamma interferon production, but type 2 cytokines were dominant by the time of challenge. The controls showed little response to challenge infection before the acute stage of the disease, initiated by egg deposition. In contrast, the responses of vaccinated animals were muted throughout the challenge period. Vaccination also induced parasite-specific immunoglobulin M (IgM) and IgG, which reached high levels at the time of challenge, while in control animals levels did not rise markedly before egg deposition. The protective effects of vaccination were manifested as an amelioration of acute disease and overall morbidity, revealed by differences in gamma-glutamyl transferase level, leukocytosis, eosinophilia, and hematocrit. Moreover, vaccinated chimpanzees had a 46% lower level of circulating cathodic antigen and a 38% reduction in fecal egg output, compared to controls, during the chronic phase of infection
    • …
    corecore