102 research outputs found

    Fluctuations of radiation from a chaotic laser below threshold

    Get PDF
    Radiation from a chaotic cavity filled with gain medium is considered. A set of coupled equations describing the photon density and the population of gain medium is proposed and solved. The spectral distribution and fluctuations of the radiation are found. The full noise is a result of a competition between positive correlations of photons with equal frequencies (due to stimulated emission and chaotic scattering) which increase fluctuations, and a suppression due to interaction with a gain medium which leads to negative correlations between photons. The latter effect is responsible for a pronounced suppression of the photonic noise as compared to the linear theory predictions.Comment: 7 pages, 5 figures; expanded version, to appear in Phys. Rev.

    A study of random laser modes in disordered photonic crystals

    Full text link
    We studied lasing modes in a disordered photonic crystal. The scaling of the lasing threshold with the system size depends on the strength of disorder. For sufficiently large size, the minimum of the lasing threshold occurs at some finite value of disorder strength. The highest random cavity quality factor was comparable to that of an intentionally introduced single defect. At the minimum, the lasing threshold showed a super-exponential decrease with the size of the system. We explain it through a migration of the lasing mode frequencies toward the photonic bandgap center, where the localization length takes the minimum value. Random lasers with exponentially low thresholds are predicted.Comment: 4 pages, 4 figure

    Study of transmission and reflection from a disordered lasing medium

    Get PDF
    A numerical study of the statistics of transmission (tt) and reflection (rr) of quasi-particles from a one-dimensional disordered lasing or amplifying medium is presented. The amplification is introduced via a uniform imaginary part in the site energies in the disordered segment of the single-band tight binding model. It is shown that tt is a non-self-averaging quantity. The cross-over length scale above which the amplification suppresses the transmittance is studied as a function of amplification strength. A new cross-over length scale is introduced in the regime of strong disorder and weak amplification. The stationary distribution of the backscattered reflection coefficient is shown to differ qualitatively from the earlier analytical results obtained within the random phase approximation.Comment: 5 pages RevTex (twocolumn format), 5 EPS figures, considerably modifie

    Time Dependent Theory for Random Lasers

    Full text link
    A model to simulate the phenomenon of random lasing is presented. It couples Maxwell's equations with the rate equations of electronic population in a disordered system. Finite difference time domain methods are used to obtain the field pattern and the spectra of localized lasing modes inside the system. A critical pumping rate PrcP_{r}^{c} exists for the appearance of the lasing peaks. The number of lasing modes increase with the pumping rate and the length of the system. There is a lasing mode repulsion. This property leads to a saturation of the number of modes for a given size system and a relation between the localization length ξ\xi and average mode length LmL_m.Comment: 8 pages. Send to PR

    Super-reflection of light from a random amplifying medium with disorder in the complex refractive index : Statistics of fluctuations

    Full text link
    The probability distribution of the reflection coefficient for light reflected from a one-dimensional random amplifying medium with {\it cross-correlated} spatial disorder in the real and the imaginary parts of the refractive index is derived using the method of invariant imbedding. The statistics of fluctuations have been obtained for both the correlated telegraph noise and the Gaussian white-noise models for the disorder. In both cases, an enhanced backscattering (super-reflection with reflection coefficient greater than unity) results because of coherent feedback due to Anderson localization and coherent amplification in the medium. The results show that the effect of randomness in the imaginary part of the refractive index on localization and super-reflection is qualitatively different.Comment: RevTex 6 pages, 3 figures in ps file

    Acoustic Attenuation by Two-dimensional Arrays of Rigid Cylinders

    Full text link
    In this Letter, we present a theoretical analysis of the acoustic transmission through two-dimensional arrays of straight rigid cylinders placed parallelly in the air. Both periodic and completely random arrangements of the cylinders are considered. The results for the sound attenuation through the periodic arrays are shown to be in a remarkable agreement with the reported experimental data. As the arrangement of the cylinders is randomized, the transmission is significantly reduced for a wider range of frequencies. For the periodic arrays, the acoustic band structures are computed by the plane-wave expansion method and are also shown to agree with previous results.Comment: 4 pages, 3 figure

    A Phase transition in acoustic propagation in 2D random liquid media

    Get PDF
    Acoustic wave propagation in liquid media containing many parallel air-filled cylinders is considered. A self-consistent method is used to compute rigorously the propagation, incorporating all orders of multiple scattering. It is shown that under proper conditions, multiple scattering leads to a peculiar phase transition in acoustic propagation. When the phase transition occurs, a collective behavior of the cylinders appears and the acoustic waves are confined in a region of space in the neighborhood of the transmission source. A novel phase diagram is used to describe such phase transition. Originally submitted on April 6, 99.Comment: 5 pages, 5 color figure

    Correlations in Transmission of Light through a Disordered Amplifying Medium

    Full text link
    The angular and frequency correlation functions of the transmission coefficient for light propagation through a strongly scattering amplifying medium are considered. It is found that just as in the case of an elastic scattering medium the correlation function consists of three terms. However, the structure of the terms is rather different. Angular correlation has a power-law decay and exhibits oscillations. There is no "memory effect" as in the case of an elastic medium. Interaction between diffusion modes is strongly enhanced near the lasing threshold. Frequency correlation scale decreases close to the lasing threshold. We also consider time correlations of the transmission in the case of nonstationary inhomogeneities. We find short- and long-range time correlations. The scale of the short-range correlation decreases, while the long-range correlation scale becomes infinite near the threshold.Comment: 16 pages, 7 postscript figure

    Diffusion of particles moving with constant speed

    Get PDF
    The propagation of light in a scattering medium is described as the motion of a special kind of a Brownian particle on which the fluctuating forces act only perpendicular to its velocity. This enforces strictly and dynamically the constraint of constant speed of the photon in the medium. A Fokker-Planck equation is derived for the probability distribution in the phase space assuming the transverse fluctuating force to be a white noise. Analytic expressions for the moments of the displacement along with an approximate expression for the marginal probability distribution function P(x,t)P(x,t) are obtained. Exact numerical solutions for the phase space probability distribution for various geometries are presented. The results show that the velocity distribution randomizes in a time of about eight times the mean free time (8t∗8t^*) only after which the diffusion approximation becomes valid. This factor of eight is a well known experimental fact. A persistence exponent of 0.435±0.0050.435 \pm 0.005 is calculated for this process in two dimensions by studying the survival probability of the particle in a semi-infinite medium. The case of a stochastic amplifying medium is also discussed.Comment: 9 pages, 9 figures(Submitted to Phys. Rev. E

    Localization of Light: Dual Symmetry between Absorption and Amplification

    Get PDF
    We study the propagation of radiation through a disordered waveguide with a complex dielectric constant ϵ\epsilon, and show that dual systems, which differ only in the sign of the imaginary part of ϵ\epsilon, have the same localization length. Paradoxically, absorption and stimulated emission of radiation suppress the transmittance of the waveguide in the same way.Comment: Added a reference to the paper by Z.Q. Zhang, Phys.Rev.B. 52, 7960 (1995
    • …
    corecore