736 research outputs found

    Parametric Generation of Subharmonics in a Composite Multiferroic Resonator

    Get PDF
    Parametric generation of subharmonics in a composite multiferroic resonator is observed and investigated. The resonator has the form of a disk and contains two mechanically coupled layers, one of which is amorphous ferromagnet Fe-B-Si-C and the other piezoelectric lead zirconate titanate. The resonator is placed inside two planar electromagnetic coils with orthogonal axes. A static magnetic field of 0-100 Oe is applied parallel to the plane of the resonator. The resonator is excited in the frequency range f = 9-10 kHz by either a harmonic magnetic field with an amplitude of up to 5 Oe generated by one of the coils, or a harmonic electric field with an amplitude of up to 500 V/cm applied to the piezoelectric layer. When the pump field is above a certain threshold, generation of a subharmonic of half-frequency (f/2) is observed for three different excitation methods. The first two employed either the direct magnetoelectric effect or the converse magnetoelectric effect, while in the third a transformer system is utilized. The subharmonic is generated in a limited range of pump frequencies and its amplitude is a nonlinear function of both the pump-field amplitude and the strength of static magnetic field. A theory of parametric generation of the subharmonic in a multiferroic resonator is developed, taking into account the magnetoacoustic nonlinearity of the ferromagnetic layer of the structure and excitation of acoustic resonances near the pump and subharmonic frequencies. The theory qualitatively describes the main characteristics of the subharmonic generation.</p

    Parametric Generation of Subharmonics in a Composite Multiferroic Resonator

    Get PDF
    Parametric generation of subharmonics in a composite multiferroic resonator is observed and investigated. The resonator has the form of a disk and contains two mechanically coupled layers, one of which is amorphous ferromagnet Fe-B-Si-C and the other piezoelectric lead zirconate titanate. The resonator is placed inside two planar electromagnetic coils with orthogonal axes. A static magnetic field of 0-100 Oe is applied parallel to the plane of the resonator. The resonator is excited in the frequency range f = 9-10 kHz by either a harmonic magnetic field with an amplitude of up to 5 Oe generated by one of the coils, or a harmonic electric field with an amplitude of up to 500 V/cm applied to the piezoelectric layer. When the pump field is above a certain threshold, generation of a subharmonic of half-frequency (f/2) is observed for three different excitation methods. The first two employed either the direct magnetoelectric effect or the converse magnetoelectric effect, while in the third a transformer system is utilized. The subharmonic is generated in a limited range of pump frequencies and its amplitude is a nonlinear function of both the pump-field amplitude and the strength of static magnetic field. A theory of parametric generation of the subharmonic in a multiferroic resonator is developed, taking into account the magnetoacoustic nonlinearity of the ferromagnetic layer of the structure and excitation of acoustic resonances near the pump and subharmonic frequencies. The theory qualitatively describes the main characteristics of the subharmonic generation.</p

    Josephson Vortex States in Intermediate Fields

    Full text link
    Motivated by recent resistance data in high TcT_c superconductors in fields {\it parallel} to the CuO layers, we address two issues on the Josephson-vortex phase diagram, the appearances of structural transitions on the observed first order transition (FOT) curve in intermediate fields and of a lower critical point of the FOT line. It is found that some rotated pinned solids are more stable than the ordinary rhombic pinned solids with vacant interlayer spacings and that, due to the vertical portion in higher fields of the FOT line, the FOT tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February, 2002

    Giving electrons a ride: nanomechanical electron shuttles

    Full text link
    Nanomechanical shuttles transferring small groups of electrons or even individual electrons from one electrode to another offer a novel approach to the problem of controlled charge transport. Here, we report the fabrication of shuttle-junctions consisting of a 20 nm diameter gold nanoparticle embedded within the gap between two gold electrodes. The nanoparticle is attached to the electrodes through a monolayer of flexible organic molecules which play the role of springs so that when a sufficient voltage bias is applied, then nanoparticle starts to oscillate transferring electrons from one electrode to the other. Current-voltage characteristics for the fabricated devices have been measured and compared with the results of our computer simulations.Comment: 11 pages, 4 figure

    Calculation of minor hysteresis loops under metastable to stable transformations in vortex matter

    Get PDF
    We present a model in which metastable supercooled phase and stable equilibrium phase of vortex matter coexist in different regions of a sample. Minor hysteresis loops are calculated with the simple assumption of the two phases of vortex matter having field-independent critical current densities. We use our earlier published ideas that the free energy barrier separating the metastable and stable phases reduces as the magnetic induction moves farther from the first order phase transition line, and that metastable to stable transformations occur in local regions of the sample when the local energy dissipation exceeds a critical value. Previously reported anomalous features in minor hysteresis loops are reproduced, and calculated field profiles are presented.Comment: 9pages, 7 figure

    Development of low-temperature thermochemical conversion reactors for coal power engineering

    Full text link
    The main principles applied in developing a technology for low-temperature thermochemical conversion of brown coals to obtain fuel gas and semicoke intended for being fired in two-fuel power installations are considered on the basis of a set of experimental and calculated investigations. The obtained results are compared with the experimental data obtained using other methods and with the results of previous industrial tests. © 2013 Pleiades Publishing, Inc

    About possibility to locate an EQ epicenter using parameters of ELF/ULF preseismic emission

    Get PDF
    A relation between parameters of preseismic ULF/ELF emissions and EQ is studied. The magnetic data measured at Karymshino station (Kamchatka, Russia) along with data on local seismic activity during eight years of observations (2001–2008) are taken for the analysis. Source azimuth is detected in different techniques, based on the analysis of the total field and its polarized pulsed component. The latter technique shows a better accuracy in the source azimuth detection. The errors of the method are associated with existence of non-seismic sources and with use of one-point observation. The second error can be eliminated by development of multi-point observations

    Continuous wave diode pumped Yb:LLF and Yb:NYF lasers

    Get PDF
    Experimental and theoretical results of investigation of CW Yb:LiLuF4 (Yb:LLF) and Yb:Na4Y6F22 (Yb:NYF) lasers under longitudinal diode laser pump are reported. Slope efficiencies of 41%, 58% with 0.21, 0.53 W of output powers were obtained for the Yb:LLF and Yb:NYF lasers, correspondingly. The Yb:NYF laser demonstrated tunability in the region from 1005 to 1061 nm. The mathematical modelling of CW laser operation predicts under optimized laser parameters optical to optical efficiencies of about 55% and 51% for Yb:LLF and Yb:NYF lasers, respectively. © 2009 Elsevier B.V. All rights reserved

    Magnetically enhanced plasma coating of nanostructures with ultrathin diamond-like carbon films

    Get PDF
    Coating using magnetically enhanced plasma deposition gives smooth diamond-like carbon films that increase hardness and wear resistance of nanostructures.</p
    corecore