1,848 research outputs found

    Electronic phase diagram of the layered cobalt oxide system, LixCoO2 (0.0 <= x <= 1.0)

    Get PDF
    Here we report the magnetic properties of the layered cobalt oxide system, LixCoO2, in the whole range of Li composition, 0 <= x <= 1. Based on dc-magnetic susceptibility data, combined with results of 59Co-NMR/NQR observations, the electronic phase diagram of LixCoO2 has been established. As in the related material NaxCoO2, a magnetic critical point is found to exist between x = 0.35 and 0.40, which separates a Pauli-paramagnetic and a Curie-Weiss metals. In the Pauli-paramagnetic regime (x <= 0.35), the antiferromagnetic spin correlations systematically increase with decreasing x. Nevertheless, CoO2, the x = 0 end member is a non-correlated metal in the whole temperature range studied. In the Curie-Weiss regime (x >= 0.40), on the other hand, various phase transitions are observed. For x = 0.40, a susceptibility hump is seen at 30 K, suggesting the onset of static AF order. A magnetic jump, which is likely to be triggered by charge ordering, is clearly observed at Tt = 175 K in samples with x = 0.50 (= 1/2) and 0.67 (= 2/3), while only a tiny kink appears at T = 210 K in the sample with an intermediate Li composition, x = 0.60. Thus, the phase diagram of the LixCoO2 system is complex, and the electronic properties are sensitively influenced by the Li content (x).Comment: 29 pages, 1 table, 9 figure

    Impact of lithium composition on the thermoelectric properties of the layered cobalt oxide system LixCoO2

    Get PDF
    Thermoelectric properties of the layered cobalt oxide system LixCoO2 were investigated in a wide range of Li composition, 0.98 >= x >= 0.35. Single-phase bulk samples of LixCoO2 were successfully obtained through electrochemical deintercalation of Li from the pristine LiCoO2 phase. While LixCoO2 with x >= 0.94 is semiconductive, the highly Li-deficient phase (0.75 >= x >= 0.35) exhibits metallic conductivity. The magnitude of Seebeck coefficient at 293 K (S293K) significantly depends on the Li content (x). The S293K value is as large as +70 ~ +100 uV/K for x >= 0.94, and it rapidly decreases from +90 uV/K to +10 uV/K as x is lowered within a Li composition range of 0.75 >= x >= 0.50. This behavior is in sharp contrast to the results of x <= 0.40 for which the S293K value is small and independent of x (+10 uV/K), indicating that a discontinuous change in the thermoelectric characteristics takes place at x = 0.40 ~ 0.50. The unusually large Seebeck coefficient and metallic conductivity are found to coexist in a narrow range of Li composition at about x = 0.75. The coexistence, which leads to an enhanced thermoelectric power factor, may be attributed to unusual electronic structure of the two-dimensional CoO2 block.Comment: 29 pages, 1 table, 8 figure

    Reheating after f(R) inflation

    Full text link
    The reheating dynamics after the inflation induced by R2R^2-corrected f(R)f(R) model is considered. To avoid the complexity of solving the fourth order equations, we analyze the inflationary and reheating dynamics in the Einstein frame and its analytical solutions are derived. We also perform numerical calculation including the backreaction from the particle creation and compare the results with the analytical solutions. Based on the results, observational constraints on the model are discussed.Comment: 16 pages, 11 figure

    Measurement of electron correlations in LixCoO2 (x=0.0 - 0.35) using 59Co nuclear magnetic resonance and nuclear quadrupole resonance techniques

    Get PDF
    CoO2 is the parent compound for the superconductor NaxCoO2\cdot1.3H2O and was widely believed to be a Mott insulator. We performed 59Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on LixCoO2 (x = 0.35, 0.25, 0.12, and 0.0) to uncover the electronic state and spin correlations in this series of compounds which was recently obtained through electrochemical de-intercalation of Li from pristine LiCoO2. We find that although the antiferromagnetic spin correlations systematically increase with decreasing Li-content (x), the end member, CoO2 is a non-correlated metal that well satisfies the Korringa relation for a Fermi liquid. Thus, CoO2 is not simply located at the limit of x->0 for AxCoO2 (A = Li, Na) compounds. The disappearance of the electron correlations in CoO2 is due to the three dimensionality of the compound which is in contrast to the highly two dimensional structure of AxCoO2.Comment: 4pages, 4figures, to be published in Phys.Rev.B. Rapid

    Bulk antiferromagnetism in Na0.82CoO2\bf Na_{0.82}CoO_2 single crystals

    Full text link
    Susceptibility, specific heat, and muon spin rotation measurements on high-quality single crystals of Na0.82CoO2\rm Na_{0.82}CoO_2 have revealed bulk antiferromagnetism with N\'{e}el temperature TN=19.8±0.1\rm T_N = 19.8 \pm 0.1 K and an ordered moment perpendicular to the CoO2\rm CoO_2 layers. The magnetic order encompasses nearly 100% of the crystal volume. The susceptibility exhibits a broad peak around 30 K, characteristic of two-dimensional antiferromagnetic fluctuations. The in-plane resistivity is metallic at high temperatures and exhibits a minimum at TN\rm T_N.Comment: published versio

    New Josephson Plasma Modes in Underdoped YBa2Cu3O6.6 Induced by Parallel Magnetic Field

    Full text link
    The c-axis reflectivity spectrum of underdoped YBa2Cu3O6.6 (YBCO) is measured below Tc=59K in parallel magnetic fields H//CuO2 up to 7T. Upon application of a parallel field, a new peak appears at finite frequency in the optical conductivity at the expense of suppression of c-axis condensate weight. We conclude that the dramatic change originates from different Josephson coupling strengths between bilayers with and without Josephson vortices. We find that the 400cm^-1 broad conductivity peak in YBCO gains the spectral weight under parallel magnetic field; this indicates that the condensate weight at \omega =0 is distributed to the intra-bilayer mode as well as to the new optical Josephson mode.Comment: 4 pages, 3 figure

    Future cosmological evolution in f(R)f(R) gravity using two equations of state parameters

    Full text link
    We investigate the issues of future oscillations around the phantom divide for f(R)f(R) gravity. For this purpose, we introduce two types of energy density and pressure arisen from the f(R)f(R)-higher order curvature terms. One has the conventional energy density and pressure even in the beginning of the Jordan frame, whose continuity equation provides the native equation of state wDEw_{\rm DE}. On the other hand, the other has the different forms of energy density and pressure which do not obviously satisfy the continuity equation. This needs to introduce the effective equation of state weffw_{\rm eff} to describe the f(R)f(R)-fluid, in addition to the native equation of state w~DE\tilde{w}_{\rm DE}. We confirm that future oscillations around the phantom divide occur in f(R)f(R) gravities by introducing two types of equations of state. Finally, we point out that the singularity appears ar x=xcx=x_c because the stability condition of f(R)f(R) gravity violates.Comment: 23 pages, 10 figures, correcting typing mistake in titl
    corecore