25 research outputs found

    Identification and prioritization of critical success factors in faith-based and non-faith-based organizations’ humanitarian supply chain

    Get PDF
    In the last few decades, an exponential increase in the number of disasters, and their complexity has been reported, which ultimately put much pressure on relief organizations. These organizations cannot usually respond to the disaster on their own, and therefore, all actors involved in relief efforts should have end-to-end synchronization in order to provide relief effectively and efficiently. Consequently, to smoothen the flow of relief operation, a shared understanding of critical success factors in humanitarian supply chain serves as a pre-requisite for successful relief operation. Therefore, any member of the humanitarian supply chain might disrupt this synchronization by neglecting one or several of these critical success factors. However, in this study, we try to investigate how faith-based and non-faith-based relief organizations treat these critical success factors. Moreover, we also try to identify any differences between Islamic and Christian relief organizations in identifying and prioritizing these factors. To achieve the objective of this study, we used a two-stage approach; in the first stage, we collected the critical success factors from existing humanitarian literature. Whereas, in the second stage, using an online questionnaire, we collected data on the importance of selected factors from humanitarian relief organizations from around the world in collaboration with World Association of Non-Governmental Organizations (WANGO). Later, responses were analyzed to answer the research questions using non-parametric Binomial and Wilcoxon Rank-Sum tests. Test results indicate that for RQ1, two but all factors are significant for successful relief operation. For RQ2, we found significant differences for some CSF among faith-based and non-faith-based relief organizations. Similarly for RQ3, we found significant differences for some CSF among Islamic and Christian relief organizations

    Swift trust and commitment: the missing links for humanitarian supply chain coordination?

    Get PDF
    Coordination among actors in a humanitarian relief supply chain decides whether a relief operation can be or successful or not. In humanitarian supply chains, due to the urgency and importance of the situation combined with scarce resources, actors have to coordinate and trust each other in order to achieve joint goals. This paper investigated empirically the role of swift trust as mediating variable for achieving supply chain coordination. Based on commitment-trust theory we explore enablers of swift-trust and how swift trust translates into coordination through commitment. Based on a path analytic model we test data from the National Disaster Management Authority of India. Our study is the first testing commitment-trust theory (CTT) in the humanitarian context, highlighting the importance of swift trust and commitment for much thought after coordination. Furthermore, the study shows that information sharing and behavioral uncertainty reduction act as enablers for swift trust. The study findings offer practical guidance and suggest that swift trust is a missing link for the success of humanitarian supply chains

    Spinning disc membrane electrolyzer : performance of cation-exchange membrane

    No full text

    Multicomponent ion transport in a mono and bilayer cation-exchange membrane at high current density

    Get PDF
    This work describes a model for bilayer cation-exchange membranes used in the chlor-alkali process. The ion transport inside the membrane is modeled with the Nernst–Planck equation. A logistic function is used at the boundary between the two layers of the bilayer membrane to describe the change in the properties of each membrane layer. The local convective velocity is calculated inside the membrane using the Schlögl equation and the equation of continuity. The model calculates the ion concentration profiles inside the membrane layers. Modeling results of mono- and bilayer membranes are compared. The changes in membrane voltage drop and sodium selectivity are predicted. The concentration profile of sodium ions in the bilayer membrane is significantly different from the monolayer membrane. Without the applied current, a linear change in the sodium concentration is observed in the monolayer membrane and in each layer of the bilayer membrane. With an increase in current density, the stronger electromotive force in the carboxylate layer causes a decrease in the sodium concentration in the sulfonate layer, down to the fixed ionic group concentration. This significant decrease of sodium ion concentration in the sulfonate layer results in low concentrations of counter ions and as a consequence a higher permselectivity of the bilayer membrane is obtained when compared to the single-layer membrane. As a drawback, the resistance in the bilayer membrane increases

    Nernst-Planck modeling of multicomponent ion transport in a Nafion membrane at high current density

    Get PDF
    A mathematical model of multicomponent ion transport through a cation-exchange membrane is developed based on the Nernst–Planck equation. A correlation for the non-linear potential gradient is derived from current density relation with fluxes. The boundary conditions are determined with the Donnan equilibrium at the membrane–solution interface, taking into account the convective flow. Effective diffusivities are used in the model based on the correlation of tortuosity and ionic diffusivities in free water. The model predicts the effect of an increase in current density on the ion concentrations inside the membrane. The model is fitted to the previously published experimental data. The effect of current density on the observed increase in voltage drop and the decrease in permselectivity has been analyzed using the available qualitative membrane swelling theories. The observed non-linear behavior of the membrane voltage drop versus current density can be explained by an increase in membrane pore diameter and an increase in the number of active pores. We show how the membrane pore diameter increases and dead-end pores open up when the current density is increased
    corecore