6,876 research outputs found

    3D-melting features of the irreversibility line in overdoped Bi2_2Sr2_2CuO6_6 at ultra-low temperature and high magnetic field

    Full text link
    We have measured the irreversible magnetization of an overdoped Bi2_2Sr2_2CuO6_6 single crystal up to B=28 T and down to T=60 mK, and extracted the irreversibility line Birr(T)B_{\rm irr}(T): the data can be interpreted in the whole temperature range as a 3D-anisotropic vortex lattice melting line with Lindemann number cL=0.13c_{\rm L}=0.13. We also briefly discuss the applicability of alternative models such as 2D- and quantum melting, and the connection with magnetoresistance experiments.Comment: M2S-HTSC-VI Conference paper (2 pages, 1 figure), using Elsevier style espcrc2.st

    Pneumatic press equipped with the Vortex system for white grapes processing: First results

    Get PDF
    The interaction between mechanical, computer and electronic technologies offers nowadays highly innovative solutions to be applied to the oenological machinery industry. Grapes pressing for the extraction of must from the grapes has a fundamental role for obtaining wines with high quality. The pneumatic presses commonly used work with a discontinuous cycle, taking on average about 3 hours for the extraction of the juice from the grapes. During this period, the presence of oxygen in contact with grapes can modify the qualitative characteristics of the future wine. The aim of the research was to study the \u201cVortex System\u201d applied to a pneumatic press and to evaluate the quality of wines obtained in reduction. The study was carried out in a modern winery in the province of Palermo (Italy) using cv. Catarratto lucido grapes. The machine used in the tests was a pneumatic press with a capacity of 1,900 / 2,500 kg by Puleo Srl company (Italy), equipped with the patent "Vortex System". It consists in the recovery of the inert gas by means of a passage and recirculation apparatus during grapes pressing allowing the must extraction in inert and controlled atmosphere, the non-oxidation of the product and a re-use of the gaseous component. Two operating modes were applied: AP (Air Pressing) mode, the traditional pressing mode in presence of oxygen, and NP (Nitrogen Pressing) mode with the Vortex System, performed under inert gas with nitrogen recovery. The following analytical determinations were performed on wines in triplicates: alcohol [%/vol], density [g/l], sugar [g/l], pH, total acidity [g/l], volatile acidity [g/l], malic acid [g/l], citric acid [g/l], tartaric acid [g/l], potassium [g/l], glycerin [g/l], ashes [g/l], absorbance at 420, 520 and 620 nm, polyphenols [mg/l], catechins [mg/l], free sulfur dioxide [mg/l], total sulfur dioxide [mg/l]. The use of the pneumatic press equipped with the Vortex System allowed to obtain excellent values of volatile acidity, absorbance at 420 nm, catechins in white wines and a rich aromatic component both in primary and secondary aromas

    Review of operational aspects of initial experiments utilizing the U.S. MLS

    Get PDF
    An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear

    Flight-test evaluation of two electronic display formats for approach to landing under instrument conditions

    Get PDF
    The results of a flight evaluation of two electronic display formats for the approach to landing under instrument conditions are presented. The evaluation was conducted for a base-line electronic display format and for the same format with runway symbology and track information added. The evaluation was conducted during 3 deg, manual straight-in approaches with and without initial localizer offsets. Flight path tracking performance data and pilot subjective comments were examined with regard to the pilot's ability to capture and maintain localizer and glide slope by using both display formats

    Pair-wise decoherence in coupled spin qubit networks

    Full text link
    Experiments involving phase coherent dynamics of networks of spins, such as echo experiments, will only work if decoherence can be suppressed. We show here, by analyzing the particular example of a crystalline network of Fe8 molecules, that most decoherence typically comes from pairwise interactions (particularly dipolar interactions) between the spins, which cause `correlated errors'. However at very low T these are strongly suppressed. These results have important implications for the design of quantum information processing systems using electronic spins.Comment: 4 pages, 4 figures. Final PRL versio

    Orbital and valley state spectra of a few-electron silicon quantum dot

    Full text link
    Understanding interactions between orbital and valley quantum states in silicon nanodevices is crucial in assessing the prospects of spin-based qubits. We study the energy spectra of a few-electron silicon metal-oxide-semiconductor quantum dot using dynamic charge sensing and pulsed-voltage spectroscopy. The occupancy of the quantum dot is probed down to the single-electron level using a nearby single-electron transistor as a charge sensor. The energy of the first orbital excited state is found to decrease rapidly as the electron occupancy increases from N=1 to 4. By monitoring the sequential spin filling of the dot we extract a valley splitting of ~230 {\mu}eV, irrespective of electron number. This indicates that favorable conditions for qubit operation are in place in the few-electron regime.Comment: 4 figure

    A Flight Evaluation of a VTOL Jet Transport Under Visual and Simulated Instrument Conditions

    Get PDF
    Transition, approach, and vertical landing tests for VTOL transport in terminal are

    A piloted-simulation evaluation of two electronic display formats for approach and landing

    Get PDF
    The results of a piloted-simulation evaluation of the benefits of adding runway symbology and track information to a baseline electronic-attitude-director-indicator (EADI) format for the approach-to-landing task were presented. The evaluation was conducted for the baseline format and for the baseline format with the added symbology during 3 deg straight-in approaches with calm, cross-wind, and turbulence conditions. Flight-path performance data and pilot subjective comments were examined with regard to the pilot's tracking performance and mental workload for both display formats. The results show that the addition of a perspective runway image and relative track information to a basic situation-information EADI format improve the tracking performance both laterally and vertically during an approach-to-landing task and that the mental workload required to assess the approach situation was thus reduced as a result of integration of information

    Observation of the single-electron regime in a highly tunable silicon quantum dot

    Full text link
    We report on low-temperature electronic transport measurements of a silicon metal-oxide-semiconductor quantum dot, with independent gate control of electron densities in the leads and the quantum dot island. This architecture allows the dot energy levels to be probed without affecting the electron density in the leads, and vice versa. Appropriate gate biasing enables the dot occupancy to be reduced to the single-electron level, as evidenced by magnetospectroscopy measurements of the ground state of the first two charge transitions. Independent gate control of the electron reservoirs also enables discrimination between excited states of the dot and density of states modulations in the leads.Comment: 4 pages, 3 figures, accepted for Applied Physics Letter
    • …
    corecore