1,050 research outputs found

    Prediction as memory retrieval: timing and mechanisms

    Get PDF
    In our target article [Chow, W., Smith, C., Lau, E., & Phillips, C. (2015). A “bag-of-arguments” mechanism for initial verb predictions. Language, Cognition & Neuroscience. Advance online publication. doi:10.1080/23273798.2015.1066832], we investigated the predictions that comprehenders initially make about an upcoming verb as they read and provided evidence that they are sensitive to the arguments’ lexical meaning but not their structural roles. Here we synthesise findings from our work with other studies that show that verb predictions are sensitive to the arguments’ roles if more time is available for prediction. We content that prediction involves computations that may require differing amounts of time. Further, we argue that prediction can be usefully framed as a memory retrieval problem, linking prediction to independently well-understood memory mechanisms in language processing. We suggest that the delayed impact of argument roles on verb predictions may reflect a mismatch between the format of linguistic cues and target event memories. We clarify points of agreement and disagreement with the commentaries, and explain why memory access mechanisms can account for the time course of prediction

    Spin-Wave Spectrum in `Single-Domain' Magnetic Ground State of Triangular Lattice Antiferromagnet CuFeO2

    Full text link
    By means of neutron scattering measurements, we have investigated spin-wave excitation in a collinear four-sublattice (4SL) magnetic ground state of a triangular lattice antiferromagnet CuFeO2, which has been of recent interest as a strongly frustrated magnet, a spin-lattice coupled system and a multiferroic. To avoid mixing of spin-wave spectrum from magnetic domains having three different orientations reflecting trigonal symmetry of the crystal structure, we have applied uniaxial pressure on [1-10] direction of a single crystal CuFeO2. By elastic neutron scattering measurements, we have found that only 10 MPa of the uniaxial pressure results in almost 'single domain' state in the 4SL phase. We have thus performed inelastic neutron scattering measurements using the single domain sample, and have identified two distinct spin- wave branches. The dispersion relation of the upper spin-wave branch cannot be explained by the previous theoretical model [R. S. Fishman: J. Appl. Phys. 103 (2008) 07B109]. This implies the importance of the lattice degree of freedom in the spin-wave excitation in this system, because the previous calculation neglected the effect of the spin-driven lattice distortion in the 4SL phase. We have also discussed relationship between the present results and the recently discovered "electromagnon" excitation.Comment: 5 pages, 3 figures, accepted for publication in J. Phys. Soc. Jp

    Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate.

    Get PDF
    Carbon monoxide clathrate hydrate is a potentially important constituent in the solar system. In contrast to the well-established relation between the size of gaseous molecule and hydrate structure, previous work showed that carbon monoxide molecules preferentially form structure-I rather than structure-II gas hydrate. Resolving this discrepancy is fundamentally important to understanding clathrate formation, structure stabilization and the role the dipole moment/molecular polarizability plays in these processes. Here we report the synthesis of structure-II carbon monoxide hydrate under moderate high-pressure/low-temperature conditions. We demonstrate that the relative stability between structure-I and structure-II hydrates is primarily determined by kinetically controlled cage filling and associated binding energies. Within hexakaidecahedral cage, molecular dynamic simulations of density distributions reveal eight low-energy wells forming a cubic geometry in favour of the occupancy of carbon monoxide molecules, suggesting that the carbon monoxide-water and carbon monoxide-carbon monoxide interactions with adjacent cages provide a significant source of stability for the structure-II clathrate framework

    The consumption of fish cooked by different methods was related to the risk of hyperuricemia in Japanese adults: A 3-year follow-up study

    Get PDF
    AbstractBackground and aimsFish consumption is a recognized risk factor for elevated serum uric acid (UA) levels, hyperuricemia, and gout. However, the relationship between the consumption of fish cooked by different methods and the risk of hyperuricemia is unclear. Therefore, we aimed to investigate the relationship between the consumption of fish cooked by different methods and the risk of hyperuricemia in Japanese adults.Methods and resultsA 3-year follow-up study was conducted with 424 Japanese adults aged 29–74 years. Fish consumption was assessed using a validated self-administered dietary history questionnaire, and hyperuricemia was defined as serum UA ≥7 mg/dL in men and ≥6 mg/dL in women or the use of any anti-gout treatment. During the 3-year follow-up period, we documented 30 newly diagnosed cases of hyperuricemia. After adjusting for potential confounders, multivariate logistic regressions analysis revealed a significant positive relationship between the risk of hyperuricemia and raw (sashimi and sushi) or roasted fish consumption, but not boiled or fried fish consumption. The odds ratios (95% CI) for hyperuricemia with increasing raw fish consumption were 1.00 (reference), 2.51 (0.85, 7.39), and 3.46 (1.07, 11.14) (P for trend: 0.036). Similarly, the odds ratios (95% CI) with increasing roasted fish consumption were 1.00 (reference), 3.00 (0.75, 11.89), and 5.17 (1.30, 20.62) (P for trend: 0.018).ConclusionThis 3-year follow-up study showed that the consumption of raw or roasted fish, but not boiled or fried fish, was related with a higher risk of hyperuricemia in Japanese adults

    Microscopic Coexistence of Ferromagnetism and Superconductivity in Single-Crystal UCoGe

    Full text link
    Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe (TCurie2.5T_{\rm Curie} \sim 2.5 K and TSCT_{\rm SC} \sim 0.6 K) is reported from 59^{59}Co nuclear quadrupole resonance (NQR). The 59^{59}Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while nuclear spin-lattice relaxation rate 1/T11/T_1 in the ferromagnetic (FM) phase decreases below TSCT_{\rm SC} due to the opening of the superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the 59^{59}Co-NQR spectrum around TCurieT_{\rm Curie} show that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order.Comment: 5 pages, 5 figure

    Superconductivity in novel BiS2-based layered superconductor LaO1-xFxBiS2

    Full text link
    Layered superconductors have provided some interesting fields in condensed matter physics owing to the low dimensionality of their electronic states. For example, the high-Tc (high transition temperature) cuprates and the Fe-based superconductors possess a layered crystal structure composed of a stacking of spacer (blocking) layers and conduction (superconducting) layers, CuO2 planes or Fe-Anion layers. The spacer layers provide carriers to the conduction layers and induce exotic superconductivity. Recently, we have reported superconductivity in the novel BiS2-based layered compound Bi4O4S3. It was found that superconductivity of Bi4O4S3 originates from the BiS2 layers. The crystal structure is composed of a stacking of BiS2 superconducting layers and the spacer layers, which resembles those of high-Tc cuprate and the Fe-based superconductors. Here we report a discovery of a new type of BiS2-based layered superconductor LaO1-xFxBiS2, with a Tc as high as 10.6 K.Comment: 23 pages, 5 figures, 1 table (table caption has been revised), to appear in J. Phys. Soc. Jp

    Charge Ordering and Ferroelectricity in Half-doped Manganites

    Full text link
    By means of density-functional simulations for half-doped manganites, such as pseudocubic Pr0.5Ca0.5MnO3 and bilayer PrCa2Mn2O7, we discuss the occurrence of ferroelectricity and we explore its crucial relation to the crystal structure and to peculiar charge/spin/orbital ordering effects. In pseudocubic Pr0.5Ca0.5MnO3, ferroelectricity is induced in the Zener polaron type structure, where Mn ions are dimerized. In marked contrast, in bilayer PrCa2Mn2O7, it is the displacements of apical oxygens bonded to either Mn3+ or Mn4+ ions that play a key role in the rising of ferroelectricity. Importantly, local dipoles due to apical oxygens are also intimately linked to charge and orbital ordering patterns in MnO2 planes, which in turn contribute to polarization. Finally, an important outcome of our work consists in proposing Born effective charges as a valid mean to quantify charge disproportionation effects, in terms of anisotropy and size of electronic clouds around Mn ions.Comment: 5 pages, 2 figures, submitted for publicatio

    On Quantum Markov Chains on Cayley tree II: Phase transitions for the associated chain with XY-model on the Cayley tree of order three

    Full text link
    In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two now quasi equivalent QMC for the given family of interaction operators {K}\{K_{}\}.Comment: 34 pages, 1 figur

    3,12-Diaza-6,9-diazo­nia-2,13-dioxotetra­decane bis­(perchlorate)

    Get PDF
    The crystal structure of the title diprotonated diacetyl­triethyl­ene­tetra­mine (DAT) perchorate salt, C10H24N4O2 2+·2ClO4 −, can be described as a three-dimensional assembly of alternating layers consisting of diprotonated diacetyl­triethyl­ene­tetra­mine (H2DAT)2+ strands along [100] and the anionic species ClO4 −. The (H2DAT)2+ cations in the strands are connected via N—H⋯O hydrogen bonding between the acetyl groups and the amine groups of neighbouring (H2DAT)2+ cations. Layers of (H2DAT)2+ strands and perchlorate anions are connected by a network of hydrogen bonds between the NH and NH2 groups and the O atoms of the perchlorate anion. The asymmetric unit consits of one perchlorate anion in a general position, as well as of one cation that is located on a center of inversion
    corecore