30,817 research outputs found
Remarks, More Remarks and a Grounds of Decision: One Judgment too Many? TT Durai v Public Prosecutor, Unreported Magistrate's Appeal
Measurement of mechanical and thermophysical properties of dimensionally stable materials for space applications
Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values
Chain of Hardy-type local reality constraints for qubits
Non-locality without inequality is an elegant argument introduced by L. Hardy
for two qubit systems, and later generalised to qubits, to establish
contradiction of quantum theory with local realism. Interestingly, for
this argument is actually a corollary of Bell-type inequalities, viz. the
CH-Hardy inequality involving Bell correlations, but for greater than 2 it
involves -particle probabilities more general than Bell-correlations. In
this paper, we first derive a chain of completely new local realistic
inequalities involving joint probabilities for qubits, and then, associated
to each such inequality, we provide a new Hardy-type local reality constraint
without inequalities. Quantum mechanical maximal violations of the chain of
inequalities and of the associated constraints are also studied by deriving
appropriate Cirel'son type theorems. These results involving joint
probabilities more general than Bell correlations are expected to provide a new
systematic tool to investigate entanglement.Comment: 10 pages, Late
Network Inference via the Time-Varying Graphical Lasso
Many important problems can be modeled as a system of interconnected
entities, where each entity is recording time-dependent observations or
measurements. In order to spot trends, detect anomalies, and interpret the
temporal dynamics of such data, it is essential to understand the relationships
between the different entities and how these relationships evolve over time. In
this paper, we introduce the time-varying graphical lasso (TVGL), a method of
inferring time-varying networks from raw time series data. We cast the problem
in terms of estimating a sparse time-varying inverse covariance matrix, which
reveals a dynamic network of interdependencies between the entities. Since
dynamic network inference is a computationally expensive task, we derive a
scalable message-passing algorithm based on the Alternating Direction Method of
Multipliers (ADMM) to solve this problem in an efficient way. We also discuss
several extensions, including a streaming algorithm to update the model and
incorporate new observations in real time. Finally, we evaluate our TVGL
algorithm on both real and synthetic datasets, obtaining interpretable results
and outperforming state-of-the-art baselines in terms of both accuracy and
scalability
- …
