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Chain of Hardy-type local reality constraints for n qubits
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Non-locality without inequality is an elegant argument introduced by L. Hardy for two qubit
systems, and later generalised to n qubits, to establish contradiction of quantum theory with local
realism. Interestingly, for n = 2 this argument is actually a corollary of Bell-type inequalities, viz.
the CH-Hardy inequality involving Bell correlations, but for n greater than 2 it involves n-particle
probabilities more general than Bell-correlations. In this paper, we first derive a chain of completely
new local realistic inequalities involving joint probabilities for n qubits, and then, associated to each
such inequality, we provide a new Hardy-type local reality constraint without inequalities. Quantum
mechanical maximal violations of the chain of inequalities and of the associated constraints are also
studied by deriving appropriate Cirel’son type theorems. These results involving joint probabilities
more general than Bell correlations are expected to provide a new systematic tool to investigate
entanglement.

PACS numbers: 03.67.-a, 03.65.Ud, 42.50.-p

1. Introduction

Quantum theory has contradictions with local-realistic
description of Nature. This was first revealed by the dis-
covery that some quantum states violate the Bell-CHSH
correlation inequalities for two qubits following from lo-
cal realism [1]. The violations in fact become exponential
in n for some n-qubit states [2–4]. Quantum mechanical
states also show non-locality without statistical inequal-
ities as shown first by GHZ [5] for n = 3 and later by a
completely different argument by Hardy for two qubits
[6]. The Hardy non-locality argument involves several ex-
perimental joint probabilities all of which except one are
allowed to be zero quantum mechanically but not by lo-
cal realism and have been generalised to multi-qubit sys-
tems [7]. Further, there are generalisations changing the
set of non-vanishing quantum probabilities to have more
than one element [8]. Recently, a set of all-versus-nothing
proofs (which are multiparty generalization of the GHZ
argument of ref. [5]) of nonlocality without inequalities
for n qubits, distributed among m parties, is provided
by Cabello and Moreno [9]; they show that the so-called
graph states [10] satisfy these nonlocality proofs. These
all-versus-nothing proofs of nonlocality are associated to
local realistic inequalities involving only correlation func-
tions.

Hardy-type locality arguments, although elegant, are
weaker than Bell-type inequalities; e.g. no maximally
entangled state of two qubits satisfies Hardy-type non-
locality condition while it violates the Bell-CH inequal-
ity maximally. More specifically, corresponding to each
Hardy-type locality constraint, there is a stronger con-
straint: a generalised CH (which we call from now on as
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‘CH-Hardy’) [11] local realistic inequality homogenous in
the joint probabilities (see, for example, [12, 13] for n = 2
and [14] for arbitrary n).

Here we report our discovery that for n two-level sys-
tems, the usual CH-Hardy inequality for any n ≥ 3 is just
one out of a whole chain of CH-Hardy type local realis-
tic inequalities. A qualitative importance of the search
for new Hardy-type arguments and corresponding CH-
Hardy inequalities on n-qubit probabilities (n ≥ 3) is
that they constitute tests for entanglement which can-
not be derived from n-particle Bell correlation inequali-
ties. Although each n-th order correlation can be written
in terms of n-qubit probabilities, each n-qubit probabil-
ity cannot be written in terms of n-th order correlations
alone. E.g. it is known that some generalized GHZ states
for odd n satisfy all Bell-correlation inequalities [15] but
violate the CH-Hardy inequalities for all n [14]. Thus,
for example, all three-qubit pure entangled states vio-
late the CH-Hardy local realistic inequality (i.e., involv-
ing joint probabilities only) for tripartite two-level sys-
tems [16]. There exist computer algorithms to search
for Bell inequalities involving all joint probabilities (not
just Bell correlations) but they yield 53856 inequalities
already for n = 3 [17] and are therefore difficult to use
for general n. In contrast, here we provide a simple sys-
tematic method to list chains of CH-Hardy local realis-
tic inequalities involving n-qubit joint probabilities and
corresponding generalized Hardy-type non-locality argu-
ments without inequalities. We then derive analogues
of the Cirel’son theorem [18] (for Bell-CHSH inequali-
ties) for the present chain of CH-Hardy inequalities. The
method is to calculate eigenvalues of the relevant quan-
tum mechanical operators to deduce maximal violations
of the inequalities for general n; we also find the corre-
sponding maximal locality violations in the generalised
Hardy-type argument without inequalities. The inequal-
ities given here based on local reality are necessary con-
ditions for separability; however, as in the case of Bell
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correlation inequalities [19] they can also be expected to
trigger the discovery of quantum separability inequali-
ties (on the combinations of probabilities occurring in
the CH-Hardy chains) which are even stronger.
Notations: Consider an n-qubit EPR-Bell experi-

ment by n space-like separated observers where the i-th
observer measures at random either ei or e′i which can
each take values 0 or 1. This setup is decribed in figure
1. The measured coincidence probabilities P () are thus
given by

〈

n
∏

i=1

gi

〉

= P (g1 = 1, g2 = 1, . . . , gn = 1) , (1)

with gi = ei or ei ≡ 1 − ei, or e
′
i or e

′
i ≡ 1 − e′i. There

are 4n such coincidence probabilities, as for an example

〈

i
∏

k=1

(1− ek)

n
∏

k=i+1

e′k

〉

=

P
(

e1 = . . . = ei = 0, e′i+1 = . . . = e′n = 1
)

. (2)

As noted by Wigner [20], Local Hidden Variables
(LHV) imply the existence of a joint probability distri-
bution

P ({e}, {e′}) ≡ P (e1, . . . , en, e
′
1, . . . , e

′
n)

in terms of which,

〈

n
∏

i=1

gi

〉

LHV

=

∑

e1,e2,...,en,e′1,e
′

2
,...,e′

n

(

n
∏

i=1

gi

)

P ({e}, {e′}) , (3)

where the summation goes over 0 and 1 for each of the
ei and e

′
i.

In contrast, in a quantum state with density operator
ρ,

〈

n
∏

i=1

gi

〉

QM

= Tr

[

ρ

n
∏

i=1

Gi

]

≡
〈

n
∏

i=1

Gi

〉

ρ

, (4)

where Gi’s (taken from the set of observables E1, E2, . . .,

En, E1, E2, . . ., En, E
′
1, E

′
2, . . ., E

′
n, E

′
1, E

′
2, . . ., E

′
n,

whose descriptions are given below) are the self-adjoint
projection operators corresponding to the variables gi,
i.e., ei ↔ Ei, e

′
i ↔ E′

i with

Ei =
I + ~σ(i).~a(i)

2
, E′

i =
I + ~σ(i).~a(i)′

2
. (5)
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FIG. 1: The n-qubit EPR-Bell Experiment by n space-like separated observers on an n-qubit system, evolved from the sourse
S; the i-th observer measures ei or e

′
i, each of which can take values 0 or 1.

Here ~σ(i)’s are Pauli-matrices for the i-th qubit, ~a(i)

and ~a(i)′ are two different directions (unit vectors) cor-
responding to measurements of ei and e′i respectively.

Similarly, ei = 1− ei ↔ Ei, e′i = 1− e′i ↔ E′
i, with

Ei =
I − ~σ(i).~a(i)

2
, E′

i =
I − ~σ(i).~a(i)′

2
. (6)

Thus, for example,

PQM

(

e1 = . . . = ei = 0, e′i+1 = . . . = e′n = 1
)

=

〈

i
∏

j=1

Ej

n
∏

k=i+1

E′
k

〉

ρ

. (7)
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In section 2, we discuss generalized versions of Hardy’s
local reality constraints on probabilities and the corre-
sponding CH-Hardy inequalities. In section 3, we derive a
chain of CH-Hardy type local reality inequalities. In sec-
tion 4, we derive new Hardy-type local reality constraints
without inequalities. Section 5 deals with quantum me-
chanical violation of the new Hardy-type local reality
constraints without inequalities. Eigenvalues of some of
the ‘Bell’ operators appearing in the above-mentioned
chain of local reality inequalities are derived in section 6
and used to deduce Cirel’son-type theorems on quantum
mechanical violation of these inequalities. In section 7,
we summarise our conclusions and possible future direc-
tions.

2. Hardy’s local reality constraints on
probabilities and corresponding

CH-Hardy inequalities

Suppose that the probability

P (e′k = 1 ∀k) > 0, (8)

and that

n
∑

i=1

P (ei = 1; e′k = 1 ∀k 6= i) = 0; (9)

then local reality implies that the probability

P (ek = 0 ∀k) > 0, (10)

which is Hardy’s local reality condition [6], extended in
[7] for general n. The proof is elementary. The condition
P (e′k = 1 ∀k) > 0 implies the existence of events with
all e′k = 1. Assuming local reality, condition (9) then
requires that all the ei = 0 for these events, and hence
the condition (10).
Moreover, it is elementary to prove the associated CH-

Hardy inequality [12], extended to general n [14],

X ≡ P (ek = 0 ∀k)+

n
∑

i=1

P (ei = 1; e′k = 1 ∀k 6= i)− P (e′k = 1 ∀k) ≥ 0, (11)

which contains the extended Hardy locality constraints,
mentioned above.
Proof: The left-hand side of (11) in an LHV theory is

XLHV ≡ 〈X ({e}, {e′})〉LHV =

∑

e1,...,en;e′1,...,e
′

n

X ({e}, {e′})P ({e}, {e′}) , (12)

where

X ({e}, {e′}) =
n
∏

k=1

ek −
n
∏

k=1

e′k +
n
∑

i=1

ei

n
∏

k=1,k 6=i

e′k. (13)

Note that X ({e}, {e′}) is non-negative if
∏n

k=1 e
′
k = 0.

On the other hand, if
∏n

k=1 e
′
k = 1, we then have

X ({e}, {e′}) =
n
∏

k=1

ek − 1 +

n
∑

i=1

ei,

which equals 0 if all ek’s are 1, and which is ≥ 0 if at
least one ek = 0. Thus X ({e}, {e′}) is ≥ 0 for all values
of the argument. Hence XLHV ≥ 0, Q.E.D.
New results: We also obtain here a local reality upper
bound on X which extends the CH-Hardy inequality for
n = 2 to general n.
Upper bound on X :

XLHV ≤ n− 1. (14)

Proof: It suffices to show that X ({e}, {e′}) ≤ n− 1 for
all values of the arguments. If

∏n
k=1 e

′
k = 0, at least one

e′k, say e
′
i = 0. Then

X ({e}, {e′}) =
n
∏

k=1

ek + ei

n
∏

k=1,k 6=i

e′k ≤
n
∏

k=1

ek + ei ≤ 1.

If
∏n

k=1 e
′
k = 1, all e′k = 1, and hence

X ({e}, {e′}) =
n
∏

k=1

ek − 1 +

n
∑

i=1

ei.

If
∏n

k=1 ek = 1, the right-hand side vanishes; if
∏n

k=1 ek = 0, at least one ek, say ei = 0, i.e., ei = 1,
and then

X ({e}, {e′}) =
n
∑

j=1,j 6=i

ej ≤ n− 1.

Thus X ({e}, {e′}) ≤ n − 1 in all cases, with equality
being reached when all e′k = 1, and all ei = 1. Q.E.D.

3. Chain of Hardy-type local reality
inequalities

The following identity provides a simple proof of the
local reality inequality associated to Hardy’s non-locality
for general n, and suggests the existence of a chain
of other local reality inequalities exhibiting Hardy-type
non-locality.
Master Identity:

n
∏

k=1

ek−
n
∏

k=1

e′k =

(

1−
n
∏

k=1

e′k

)

n
∏

k=1

ek−
(

1−
n
∏

k=1

ek

)

n
∏

k=1

e′k,

(15)
where

(

1−
n
∏

k=1

ek

)

= en +

n−1
∑

i=1

ei

n
∏

j=i+1

ej . (16)
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Equations (15) and (16) constitute the master identity.
Our aim is to find bounds on the right-hand side of eq.

(15) in terms of n-fold products whose expectation values
are experimentally measurable, i.e. they correspond to
quantum expectation values of products of commuting
observables. Using the fact that ej ≤ 1 on the right-
hand side of equation (16), and then using the fact that
e′k ≤ 1, we get

(

1−
n
∏

k=1

ek

)

n
∏

k=1

e′k ≤
n
∑

i=1

ei

n
∏

k=1,k 6=i

e′k. (17)

If instead we retain just one or two terms, ej or ej ek in
the coefficient of an ei in equation (16), we get, succes-
sively
(

1−
n
∏

k=1

ek

)

n
∏

k=1

e′k ≤ eiej

n
∏

k=1,k 6=i,j

e′k+
n
∑

l=1,l 6=i

el

n
∏

k=1,k 6=l

e′k,

(18)
for i < j < n, and

(

1−
n
∏

k=1

ek

)

n
∏

k=1

e′k ≤ eiejek

n
∏

l=1,l 6=i,j,k

e′l

+

n
∑

l=1,l 6=i

el

n
∏

k=1,k 6=l

e′k, (19)

for i < j < k < n, and a sequence of other inequalities
by keeping more and more terms for the coefficient of an
ei on the right-hand side of equation (16). Of course one
may also do that for the coefficients of more than one ei
on the right-hand side of (16), and obtain for example
(

1−
n
∏

k=1

ek

)

n
∏

k=1

e′k ≤ eiej

n
∏

k=1,k 6=i,j

e′k+ekel

n
∏

m=1,m 6=k,l

e′m

+

n
∑

p=1,p6=i,k

ep

n
∏

q=1,q 6=p

e′q, (20)

for i < j < k < l < n, etc. Using the non-negativity of
the first term on the right-hand side of equation (15), we
obtain the following chain of inequalities (by respectively
using equations (17), (18), (19), and (20)),

X ({e}, {e′}) =
n
∏

k=1

ek −
n
∏

k=1

e′k +
n
∑

i=1

ei

n
∏

k=1,k 6=i

e′k ≥ 0,

(21)

Xij ({e}, {e′}) =
n
∏

k=1

ek −
n
∏

k=1

e′k + eiej

n
∏

k=1,k 6=i,j

e′k

+

n
∑

l=1,l 6=i

el

n
∏

k=1,k 6=l

e′k ≥ 0 for i < j < n, (22)

Xijk ({e}, {e′}) =
n
∏

l=1

el −
n
∏

l=1

e′l + eiejek

n
∏

l=1,l 6=i,j,k

e′l

+

n
∑

l=1,l 6=i

el

n
∏

m=1,m 6=l

e′m ≥ 0 for i < j < k < n, (23)

Xijkl ({e}, {e′}) =
n
∏

m=1

em −
n
∏

m=1

e′m + eiej

n
∏

m=1,m 6=i,j

e′m

+ ekel

n
∏

m=1,m 6=k,l

e′m +
n
∑

p=1,p6=i,k

ep

n
∏

q=1,q 6=p

e′q ≥ 0 (24)

for i < j < k < l < n, and many others.
Multiplying successively equations (21) - (24) by

P ({e}, {e′}) and summing over all values of the ek and e′k,
we obtain the inequality XLHV ≥ 0 stated before (which
follows from equation (21)) and the new inequalities

(Xij)LHV ≥ 0, i < j < n, n ≥ 3, (25)

where

Xij = P (ek = 0 ∀k)− P (e′k = 1 ∀k)+

P (ei = 1, ej = 0, e′k = 1 ∀k 6= i, j)+

n
∑

l=1,l 6=i

P (el = 1, e′k = 1 ∀k 6= l) . (26)

Similarly,

(Xijk)LHV ≥ 0, i < j < k < n, n ≥ 4, (27)

where

Xijk = P (ek = 0 ∀k)− P (e′k = 1 ∀k)+

P (ei = 1, ej = ek = 0, e′l = 1 ∀l 6= i, j, k)+

n
∑

l=1,l 6=i

P (el = 1, e′k = 1 ∀k 6= l) , (28)

and

(Xijkl)LHV ≥ 0, i < j < k < l < n, n ≥ 5, (29)

where

Xijkl = P (em = 0 ∀m)− P (e′m = 1 ∀m)+

P (ei = 1, ej = 0, e′m = 1 ∀m 6= i, j)+
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P
(

ek = 1, el = 0, e′p = 1 ∀p 6= k, l
)

+

n
∑

r=1,r 6=i,k

P (er = 1, e′s = 1 ∀s 6= r) . (30)

Corresponding to the new lower bounds, given by equa-
tions (25), (27), and (29), we can also obtain the following
upper bounds respectively.

Upper bounds:

(Xij)LHV ≤ n− 2, for n ≥ 3; (31)

(Xijk)LHV ≤ n− 2, for n ≥ 4; (32)

(Xijkl)LHV ≤ n− 3, for n ≥ 5. (33)

For proofs of (31) – (33), see the Appendix.

4. New Hardy-type local reality
constraints without inequalities

Hardy’s local reality constraints, corresponding to the
condition XLHV ≥ 0, are already given by equations (8)
– (10). In this section, we provide local reality constraints
on joint probabilities corresponding to the conditions
(Xij)LHV ≥ 0, (Xijk)LHV ≥ 0, and (Xijkl)LHV ≥ 0,
without using these inequalities.

(i) Suppose P (e′k = 1 ∀k) 6= 0, and P (ei = 1, ej = 0, e′k =
1 ∀k 6= i, j) +

∑n
l=1,l 6=i P (el = 1, e′k = 1 ∀k 6= l) = 0,

n ≥ 3. Then, P (ek = 0 ∀k) ≥ P (e′k = 1 ∀k) 6= 0.

Proof: P (e′k = 1 ∀k 6= 0) implies that there exist
events with e′k = 1 ∀k; for these events, the vanishing
of the probabilities under the summation means that
el = 0 ∀l 6= i, and in particular, ej = 0; the vanish-
ing of P (ei = 1, ej = 0, e′k = 1 ∀k 6= i, j) then means
that ei = 0, i.e., all ek = 0 for these events. Hence
P (ek = 0 ∀k) ≥ P (e′k = 1 ∀k) 6= 0 which is a new Hardy-
type local reality constraint that we proved without using
the inequality (Xij)LHV ≥ 0. Q.E.D.

Similarly we can prove the following new Hardy-type
local reality constraints without using the associated Bell
inequalities (Xijk)LHV ≥ 0, and (Xijkl)LHV ≥ 0.

(ii) Suppose P (e′k = 1 ∀k) 6= 0, and for i < j <
k < n, P (ei = 1, ej = ek = 0, e′l = 1 ∀l 6= i, j, k) +
∑n

l=1,l 6=i P (el = 1, e′k = 1 ∀k 6= l) = 0, n ≥ 4. Then,

P (ek = 0 ∀k) ≥ P (e′k = 1 ∀k) 6= 0.

Proof: Since P (e′k = 1 ∀k) 6= 0, there exist events with
e′k = 1 for all k; the vanishing of the probabilities under
the summation means that el = 0 for all l 6= i, and
in particular ej = 0 and ek = 0 for these events; the
vanishing of P (ei = 1, ej = ek = 0, e′l = 1 ∀l 6= i, j, k)
then implies ei = 0 for these events. Hence

P (ek = 0 ∀k) ≥ P (e′k = 1 ∀k) 6= 0,

a new Hardy-type local reality constraint. Q.E.D.

(iii) Suppose P (e′k = 1 ∀k) 6= 0, and for i < j < k < l <
n, P (ei = 1, ej = 0, e′k = 1 ∀k 6= i, j) + P (ek = 1, el =
0, e′m = 1 ∀m 6= k, l) +

∑n
p=1,p6=i,k P (ep = 1, e′q = 1 ∀q 6=

p) = 0, n ≥ 5. Then, proceeding as before, we can prove
that

P (ek = 0 ∀k) ≥ P (e′k = 1 ∀k) 6= 0,

another Hardy-type local reality constraint.

A chain of such constraints can be obtained by a
straight forward extension of the simple argument (as
mentioned above) without using the associated Bell in-
equalities.

5. Quantum violation of the new
Hardy-type local reality constraints

without inequalities

In this section, we discuss quantum mechanical vio-
lations of the new Hardy-type local reality constraints
without inequalities. Finding maximum possible viola-
tions of these constraints leads to optimization of the
quantum states as well as of the choices of the observ-
ables Ei, E

′
i. The eigenstates |ei = 0〉, |ei = 1〉 of Ei are

related to the eigenstates |e′i = 0〉, |e′i = 1〉 of E′
i by a

unitary transformation,

(

|e′i = 0〉
|e′i = 1〉

)

=

(

−ai bi
b∗i a∗i

)(

|ei = 0〉
|ei = 1〉

)

,

where |ai|2 + |bi|2 = 1.
For n = 3, the maximum quantum mechanical viola-

tion of the Hardy-like constraints (8) – (10), correspond-
ing to the CH-Hardy inequality (11), is known to have the
maximum possible value of the probability P (e′k = 1 ∀k)
as 0.125 [21]. We find here the maximum violation of the
Hardy-like constraints in Sec. 4(i) for n = 3 explicitly, to
illustrate the procedure. We seek a state

|ψ〉 =
∑

e1,e2,e3∈{0,1}
ce1e2e3 |e1e2e3〉

which maximizes P (e′k = 1 ∀k) by varying the coefficients
ce1e2e3 , subject to the constraints

P (ek = 0 ∀k) = 0, P (e1 = 1, e2 = 0, e′3 = 1) = 0,

P (e2 = 1, e′1 = e′3 = 1) = 0, P (e3 = 1, e′1 = e′2 = 1) = 0,

and 〈ψ|ψ〉 = 1.
Since the constraints only involve probabilities in a sin-

gle state, and not interference between different states, it
turns out to be sufficent to choose phases of the states |ei〉
such that the coefficients ce1e2e3 are real. Using the La-
grange method of undetermined multipliers we find that
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for P (e′k = 1 ∀k) to be stationary under variations of
ce1e2e3 , the ratios bj/aj must be real, and we may choose
the phases of the states |e′j = 0〉, |e′j = 1〉 such that the
aj and bj are real. Stationarity is then achieved when
the coefficients ce1e2e3 are chosen to be, c000 = 0 and

{c001, c010, c011, c100, c101, c110, c111} =

± 1
√

(1− b21b
2
2)[b

2
3(1− b21b

2
2) + b21b

2
2]

{

b3(1 − b21b
2
2), a2a3b

2
1b2,

−b21a2b2b3, a1b1b22a3,−a1b1b22b3, a1a2a3b1b2,−a1a2b1b2b3
}

.

The stationary value of P (e′k = 1 ∀k) is then,

P (e′k = 1 ∀k) = b21b
2
2b

2
3(1− b23)(1− b21b

2
2)

b23(1− b21b
2
2) + b21b

2
2

,

which reaches a maximum value,

P (e′k = 1 ∀k) = 5
√
5− 11

2
≈ 0.09017,

when

b21b
2
2 = b23 =

3−
√
5

2
=

(√
5− 1

2

)2

. (34)

Since the solutions b1, b2, b3 are not unique, the corre-
sponding coefficients ce1e2e3 , given above, are not unique,
i.e., the states |ψ〉 are not unique. A simple example

is the choice a2 = 0, b2 = 1, b3 = b1 = (
√
5 − 1)/2,

a3 = a1 =
√

(
√
5− 1)/2 =

√
b1, which gives the state

|ψ〉 =
∑

e1,e2,e3∈{0,1}
ce1e2e3 |e1e2e3〉,

with c000 = c010 = c011 = c110 = c111 = 0, and

{c001, c100, c101} =

√
5− 1

2







1, 1,−

√√
5− 1

2







,

which achieves the maximum violation of the new
Hardy-like constraint (described in sec. 4(i)) with

P (e′k = 1 ∀k) = (5
√
5−11)/2. The state is not a general-

ized GHZ state. In fact, the state |ψ〉, given just above, is
a tensor product of a single-qubit state and a two-qubit
entangled state. Further, the continuum ambiguity in the
solutions b1, b2, b3, given by equation (34), translates to
an one parameter family of state vectors |ψ〉 achieving

the maximum violation (5
√
5− 11)/2.

6. Cirel’son-type theorems on maximal
violations of the corresponding

CH-Hardy inequalities

The usual Cirel’son theorem yields the maximum pos-
sible violations of the Bell-CHSH local reality inequality.

Here we obtain analogous theorems on maximal quan-
tum violations of the CH-Hardy inequalities for particu-
lar choices of the observables X, Xij whose expectation
values are the corresponding measured quantities defined
before.
Let us first consider the quantum mechanical violation

of the inequality (11), where the quantity X (given in
equation (13)) is chosen to be the expectation value of
the operator

X =

n
∏

k=1

I − σ
(k)
z

2
−

n
∏

k=1

I + σ
(k)
x

2
+

n
∑

j=1

Hj , (35)

with

Hj =
I + σ

(j)
z

2

n
∏

k=1,k 6=j

I + σ
(k)
x

2
, for j = 1, 2, . . . , n. (36)

As |Φ〉 ≡ ⊗n
k=1 |z

(k)
− 〉, |χ〉 ≡ ⊗n

k=1 |x
(k)
+ 〉, and |Ψj〉 ≡

|z(j)+ 〉⊗n
k=1,k 6=j |x

(k)
+ 〉 are eigenstates of the operators

∏n
k=1(I−σ

(k)
z )/2,

∏n
k=1(I+σ

(k)
x )/2, and Hj respectively,

we start with a ‘test’ eigenstate of the operator X (in
equation (35)) as

|η〉 = α|Φ〉+ β|χ〉+ γ|Ψ〉,

where the (unnormalized) state |Ψ〉 is given by |Ψ〉 =
∑n

j=1 |Ψj〉.
It can be easily checked that

X|Φ〉 = |Φ〉 − 2−n/2|χ〉,

X|χ〉 = 2−n/2|Φ〉 − |χ〉+ 2−1/2|Ψ〉,

X|Ψ〉 = −n× 2−1/2|χ〉+
(

n+ 1

2

)

|Ψ〉.

Therefore, we have the follwing eigenvalue problem:

X|η〉 =
(

α+
β

(
√
2)n

)

|Φ〉 −
(

α

(
√
2)n

+ β +
γn√
2

)

|χ〉

+

(

β√
2
+
γ(n+ 1)

2

)

|Ψ〉 ≡ µ|η〉.

As the vectors |Φ〉, |χ〉 and |Ψ〉 are linearly independent,
we then get from the above-mentioned eigenvalue equa-
tion:

α+ 2−n/2β = µα,
−2−n/2α− β − γn√

2
= µβ,

β√
2
+
(

γ(n+1)
2

)

= µγ.

(37)

It follows from the first two conditions of equation (37)
that

β = α× 2n/2(µ− 1),
γ = α× 1

n

[

(1− µ2)2(n+1)/2 − 2(1−n)/2
]

.
(38)
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TABLE I: Eigenvalues of X (given in equation (35)) for dif-
ferent values of n and the corresponding bounds from local
realistic theory

Values Eigenvalues of X LHV bounds

of n

2 1.20711, - 0.20711, 0.5 0 ≤ XLHV ≤ 1

3 1.4501, - 0.223046, 0.77294 0 ≤ XLHV ≤ 2

4 1.80652, - 0.210496, 0.903973 0 ≤ XLHV ≤ 3

5 2.23266, - 0.190055, 0.957394 0 ≤ XLHV ≤ 4

6 2.688752, - 0.1689639, 0.9802124 0 ≤ XLHV ≤ 5

Using these expressions into the last condition of equa-
tion (37), we get the follwoing cubic equation in the eigen-
value µ, after cancelling out α on both sides of the con-
dition (this is possible as α 6= 0, otherwise, α = 0 would
give from equation (38) that α = β = γ = 0, i.e., the
eigenstate |η〉 of X is a null state):

2µ3−(n+1)µ2+µ
(

2−n+1 − 2 + n
)

−
(

n2−n + 2−n − 1
)

= 0.
(39)

For a few small values of n, the (approximate) eigen-
values of X are given in Table I. For n = 2, the eigen-
values are given by: µ = 1/2, (1 −

√
2)/2 ≈ −0.20711,

(1 +
√
2)/2 ≈ 1.20711, while for n = 3, the approxi-

mate eigenvalues are given by: µ = −0.22305, 0.77294,
1.4501. Thus we see that the maximal violation of the
CH-Hardy inequality (11), for the choice of the observ-

ables Ek = (I + σ
(k)
z )/2, E′

k = (I + σ
(k)
x )/2, is −0.20711

(approx.) for n = 2, and −0.22303 (approx.) for n = 3
. The eigenstates corresponding to these maximal viola-
tions are given by

α

[

|Φ〉+ (µ− 1)2n/2|χ〉+ 2(n+1)/2(µ− 1)

2µ− n− 1
|Ψ〉
]

,

with (n = 2, µ ≈ −0.20711), (n = 3, µ ≈ −0.22305),
(n = 4, µ ≈ −0.210496), etc., where |Φ〉, |χ〉, and |Ψ〉
are defined above. Here, in the above-mentioned eigen-
state, α is the normalization factor. Note that for n = 2,
the eigenvalue µ = (1 +

√
2)/2 ≈ 1.20711 of the op-

erator X corresponds to a violation of the LHV upper
bound X ≤ n− 1 by an amount 0.20711 (approx.). But
for n = 3, n = 4, etc., none of the three eigenvalues
of X gives rise to a violation of the LHV upper bound
X ≤ n − 1. It should be mentioned here that we have
listed the violations of the CH-Hardy inequality (11) for
a particular choice of the observables Ek, E

′
k. Other

choices should be investigated separately.

In the same fashion, let us now consider quantum me-
chanical violation of the LHV inequalities 0 ≤ Xij ≤
n− 2. Here we replace Xij by the operator Xij, where

Xij =

n
∏

k=1

(

I − σ
(k)
z

2

)

−
n
∏

k=1

(

I + σ
(k)
x

2

)

+

(

I + σ
(i)
z

2

)(

I − σ
(j)
z

2

)

n
∏

k=1,k 6=i,j

(

I + σ
(k)
x

2

)

+

n
∑

l=1,l 6=i

(

I + σ
(l)
z

2

)

n
∏

k=1,k 6=l

(

I + σ
(k)
x

2

)

, i < j < n.

(40)
Following a similar technique as before,we seek eigen-

vectors |Θ〉 and eigenvalues µ of Xij:

Xij|Θ〉 = µ|Θ〉. (41)

We use an ansatz,

|Θ〉 = α|Φ〉+ β|χ〉+ γ(|Ψij〉+
√
2|Ψj〉) + δ

n
∑

l=1,l 6=i,j

|Ψl〉,

(42)
where |Φ〉, |χ〉 and |Ψj〉 have the same definitions as be-
fore, and

|Ψij〉 ≡ |z(i)+ 〉|z(j)− 〉
n
⊗

k=1,k 6=i,j

|x(k)+ 〉. (43)

We obtain, after long but straightforward calculations,

Xij|Θ〉 =
(

α+
β

(
√
2)n

)

|Φ〉

−
(

α

(
√
2)n

+ β + (3/2)γ +
δ(n− 2)√

2

)

|χ〉

+

(

β√
2
+

3γ

2
√
2
+
δ(n− 1)

2

) n
∑

l=1,l 6=i,j

|Ψl〉

+

(

β/2 + γ +
(n− 2)δ

2
√
2

)

(|Ψij〉+
√
2|Ψj〉). (44)

This yields a quartic equation for the eigenvalues µ of
Xij,

{4(µ− 1)(2µ− n+ 1)− 3(n− 2)}{µ(µ− 1)

+ 2−n}+ (4µ− 1)(µ− 1)(2µ− 1) = 0. (45)

For a few values of n, the (approximate) eigenvalues of
Xij are given in Table II. For n = 3, the roots of equation
(45) can be obtained exactly, and are given by: µ = (1+
√

1 +
√
3/2)/2 ≈ 1.183, (1 −

√

1 +
√
3/2)/2 ≈ −0.183,

(1+
√

1−
√
3/2)/2 ≈ 0.683, (1−

√

1−
√
3/2)/2 ≈ 0.317.

Thus we see that the maximum eigenvalue µ = (1 +
√

1 +
√
3/2)/2 corresponds to a violation of the upper

bound Xij ≤ n − 2 while the minimum eigenvalue µ =

(1−
√

1 +
√
3/2)/2 corresponds to a violation of the lower

boundXij ≥ 0. For n = 4, 5, etc., none of the eigenvalues
of Xij gives rise to a violation of the upper bound Xij ≤
n− 2.
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TABLE II: Eigenvalues of Xij (given by equation (40)) for different values of n and the corresponding bounds from local realistic
theory

Values of n Eigenvalues of Xij LHV bounds

3 1.183013, 0.6830127, - 0.1830127, 0.3169873 0 ≤ (Xij)LHV ≤ 1

4 1.4667, 0.91912, - 0.19033, 0.30448 0 ≤ (Xij)LHV ≤ 2

5 1.911717, 0.9524242, - 0.1734191, 0.3092781 0 ≤ (Xij)LHV ≤ 3

6 2.37600, 0.978917, - 0.156122, 0.301206 0 ≤ (Xij)LHV ≤ 4

7 2.8549439, 0.9847124, - 0.1447244, 0.3050681 0 ≤ (Xij)LHV ≤ 5

7. Conclusions

The main result here is the discovery of a chain of lo-
cal realistic inequalities involving joint probabilities for
several two-level systems. Each of these inequalities may
be considered as a multipartite generalization of the bi-
partite CH-Hardy inequality [11, 22]. Corresponding to
each of these inequalities, we have given new Hardy-type
local realistic constraints without inequalities. These are
generalizations of multipartite Hardy-type [7] as well as
Cabello-type [8] constraints. An instance of quantum me-
chanical maximal violations of these constraints is given
for a three-qubit system, and its value turned out to
be (5

√
5 − 11)/2 – same as in the case of two qubits

[6]. Interestingly, the three-qubit quantum state corre-
sponding to the maximum violation is not unique – it
can have pure two-qubit entanglement or genuine three-
qubit pure entanglement. This phenomenon is not seen
in the case of maximum quantum mechanical violation of
Hardy’s non-locality constraints for three two-level sys-
tems, where this maximum violation is 1/8 and the cor-
responding three-qubit states are locally unitarily con-
nected to a three-qubit GHZ state [21]. A quantum vi-
olation of the CH-Hardy inequality (11), corresponding
to Hardy’s non-locality constraint for three two-level sys-
tems (described by the conditions (8) – (10)), is also given
here.
An interesting unresolved question is whether there are

other interesting chains of CH-Hardy type inequalities.
One may also think of extending our results to the case
of multipartite multi-level systems. For a given n (i.e.,

for a given number of parties), the local realistic inequal-
ities, described in this paper, are independent of each
other as they were obtained by using independent condi-
tions on the coefficients of ei’s in equation (16). One may
try to compare these inequalities with the existing local-
realistic inequalities involving joint probabilities [23] in
the context of introduction of noise into the quantum
states. On the other hand, towards obtaining more strin-
gent CH-Hardy type inequalities for detection of multi-
qubit entanglement, one may try to develop (instead of
local reality), the separability bounds on the operators
corresponding to X , Xij , Xijk, Xijkl , etc. – similar to
what was done in ref. [19].
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Appendix

Here we provide the proofs of the three upper bounds,
given by equations (31) – (33).
Proof of (Xij)LHV ≤ n− 2, for n ≥ 3:-

Proof: We start from

(Xij)LHV = 〈Xij ({e}, {e′})〉LHV , (46)

where Xij({e}, {e′}) is defined by equation (22). We
show that Xij({e}, {e′}) ∈ [0, n− 2] for all values of the
{e}, {e′}. If

∏n
k=1 ek = 1, only the first two terms on

the right-hand side of (22) can be non-zero, and then
Xij({e}, {e′}) ∈ [0, 1]. If

∏n
k=1 ek = 0, at least one

ek = 0, i.e., either

(i) ej = 0, or
(ii) ej = 1, ei = 0, or
(iii) ej = 1, ei = 1, and em = 0 for some m 6= i, j.

We evaluate Xij({e}, {e′}) in these three cases sepa-
rately.

Case (i): For ej = 0, Xij({e}, {e′}) = e′j
∏n

k=1,k 6=j e
′
k +

e′j
∑n

l=1,l 6=i,j el
∏n

k=1,k 6=l,j e
′
k which lies in [0, n− 2], since

either e′j or e′j must vanish, and there are then a maxi-

mum of n− 2 terms each belongs to [0, 1].

Case (ii): For ej = 1, ei = 0, Xij({e}, {e′}) =

(1− e′ie′j)
∏n

k=1,k 6=i,j e
′
k+ e

′
ie

′
j

∑n
l=1,l 6=i,j el

∏n
k=1,k 6=l,i,j e

′
k

which belongs to [0, n − 2], since either e′ie
′
j or 1 − e′ie

′
j

must vanish.

Case (iii): For ej = 1, ei = 1 and em = 0 for

some m 6= i, j, Xij({e}, {e′}) = e′m
∏n

k=1,k 6=m e′k +

e′m
∑n

l=1,l 6=i,m el
∏n

k=1,k 6=l,m e′k which belongs to [0, n−2],

since either e′m or e′m must vanish.

Finally Xij({e}, {e′}) ∈ [0, n − 2] for all values of the
arguments with the upper bound being reached when all
ek and all e′k are equal to 1; hence (Xij)LHV ∈ [0, n− 2].
Q.E.D.

A similar calculation gives the upper bound

(Xijk)LHV ≤ n− 2, n ≥ 4.

Proof: If
∏n

l=1 el = 1, it then follows from (23) that
Xijk({e}, {e′}) = 1 −

∏n
l=1 e

′
l, which lies in [0, 1]. If

∏n
l=1 el = 0, we have either

(i) ej = 0 or
(ii) ek = 0 or
(iii) ej = ek = 1, ei = 0 or
(iv) ej = ek = 1, el = 0 for some l 6= i, j, k.

Let us now discuss these four cases separately.

Case (i): In this case, Xijk({e}, {e′}) = −
∏n

l=1 e
′
l +

∏n
m=1,m 6=j e

′
m +

∑n
l=1,l 6=i,j el

∏n
m=1,m 6=l e

′
m =

e′ie
′
j

∏n
l=1,l 6=i,j e

′
l + e′ie

′
j

∑n
l=1,l 6=i,j el

∏n
m=1,m 6=l,i,j e

′
m ∈

[0, n− 2].

Case (ii): Due to the symmetry of the two cases (i)

and (ii) under j ↔ k, we again get, in this case,
Xijk({e}, {e′}) ∈ [0, n− 2].

Case (iii): In this case, Xijk({e}, {e′}) =

(1 − e′ie
′
je

′
k)
∏n

l=1,l 6=i,j,k e
′
l +

e′ie
′
je

′
k

∑n
l=1,l 6=i,j,k el

∏n
m=1,m 6=l,i,j,k e

′
m ∈ [0, n− 3].

Case (iv): Xijk({e}, {e′}) =

(e′ie
′
je

′
ke

′
l + eie

′
l)
∏n

q=1,q 6=i,j,k,l e
′
q +

e′ie
′
je

′
ke

′
l

∑n
m=1,m 6=i,j,k,l em

∏n
q=1,q 6=i,j,k,l,m e′q ∈ [0, n− 3].

Thus Xijk({e}, {e′}) ∈ [0, n − 2] in all cases with the
upper bound being reached when all ek and all e′k = 1;
hence (Xijk)LHV ≤ n− 2. Q.E.D.

A somewhat longer calculation yields the upper bound

(Xijkl)LHV ≤ n− 3, n ≥ 5.

Proof: If
∏n

m=1 em = 1, from equation (24), we then
get that Xijkl({e}, {e′}) ∈ [0, 1]. On the other hand, if
∏n

m=1 em = 0, either

(i) ej = 0, or
(ii) el = 0, or
(iii) ej = el = 1, ei = 0, or
(iv) ej = el = 1, ek = 0, or (v) ej = el = ei = ek = 1,

and ep = 0 for some p 6= i, j, l, k.

Let us now discuss these five cases separately.

Case (i): In this case, Xijkl({e}, {e′}) =

e′ie
′
ke

′
j

∏n
q=1,q 6=i,j,k e

′
q + e′ie

′
ke

′
j[ekel

∏n
m=1,m 6=k,i,j,l e

′
m +

http://arxiv.org/abs/0807.4414
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el
∏n

q=1,q 6=i,j,k,l e
′
q +

∑n
p=1,p6=i,j,k,l ep

∏n
q=1,q 6=p,i,j,k e

′
q] ∈

[0, n− 3].

Case (ii): This is similar to case (i) with the interchange

j ↔ l, and hence Xijkl({e}, {e′}) ∈ [0, n− 3].

Case (iii): In this case, Xijkl({e}, {e′}) =

(e′ie
′
jek + (1 − e′ie

′
j)e

′
ke

′
l)
∏n

m=1,m 6=i,j,k,l e
′
m +

∑n
p=1,p6=i,j,k,l ep

∏n
q=1,q 6=p e

′
q ∈ [0, n− 3].

Case (iv): This is similar to case (iii) with the interchange

i↔ k, and hence Xijkl({e}, {e′}) ∈ [0, n− 3].

Case (v): In this case,Xijkl({e}, {e′}) = e′p
∏n

q=1,q 6=p e
′
q+

(
∑n

m=1,m 6=i,j,k,l,p em
∏n

q=1,q 6=m,p e
′
q)e

′
p ≤ min{1, n− 5}.

Thus we see that in all these five cases,
Xijkl({e}, {e′}) ∈ [0, n − 3], the maximum being
reached when all ek = 1, and all e′k = 1; hence
(Xijkl)LHV ≤ n− 3. Q.E.D.


