20 research outputs found

    Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water

    Get PDF
    The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate

    Parrots Eat Nutritious Foods despite Toxins

    Get PDF
    Generalist herbivores are challenged not only by the low nitrogen and high indigestibility of their plant foods, but also by physical and chemical defenses of plants. This study investigated the foods of wild parrots in the Peruvian Amazon and asked whether these foods contain dietary components that are limiting for generalist herbivores (protein, lipids, minerals) and in what quantity; whether parrots chose foods based on nutrient content; and whether parrots avoid plants that are chemically defended.We made 224 field observations of free-ranging parrots of 17 species in 8 genera foraging on 102 species of trees in an undisturbed tropical rainforest, in two dry seasons (July-August 1992-1993) and one wet season (January-February1994). We performed laboratory analyses of parts of plants eaten and not eaten by parrots and brine shrimp assays of toxicity as a proxy for vertebrates. Parrots ate seeds, fruits, flowers, leaves, bark, and insect larvae, but up to 70% of their diet comprised seeds of many species of tropical trees, in various stages of ripeness. Plant parts eaten by parrots were rich in protein, lipid, and essential minerals, as well as potentially toxic chemicals. Seeds were higher than other plant materials in protein and lipid and lower in fiber. Large macaws of three species ate foods higher in protein and lipids and lower in fiber compared to plant parts available but not eaten. Macaws ate foods that were lower in phenolic compounds than foods they avoided. Nevertheless, foods eaten by macaws contained measurable levels of toxicity. Macaws did not appear to make dietary selections based on mineral content.Parrots represent a remarkable example of a generalist herbivore that consumes seeds destructively despite plant chemical defenses. With the ability to eat toxic foods, rainforest-dwelling parrots exploited a diversity of nutritious foods, even in the dry season when food was scarce for other frugivores and granivores

    Consumer choice as a pathway to food diversity: A case study of acai berry product labelling

    No full text
    Through labelling and marketing claims, açaí berries appear to be a purchase consumers can make to support biological diversity and rural development in the Amazon while uniquely meeting their nutritional needs. Accordingly, açaí berries seem ideal for consumers seeking to promote food diversity including biological and dietary diversity. This is supported by the popular notion that consumers can “vote with their forks” for a more sustainable and just food system. Yet the type, accuracy and form of information conveyed, as well as the standards that must be satisfied before such claims can be made, have been pre-determined by regulators and açaí companies. Using a “backwards mapping” methodology, this chapter identifies and critiques the common marketing claims on açaí products relevant to food diversity. Ultimately, the chapter reveals some of the problems with the notion that consumers can facilitate food diversity using their purchasing power
    corecore