299 research outputs found

    Decoupled UL/DL User Association in Wireless-Powered HetNets with Full-Duplex Small Cells

    Get PDF
    In this paper, we propose two downlink (DL)-uplink (UL) decoupled (DUDe) user association schemes in wireless-powered full-duplex (FD) heterogeneous networks (HetNets). We consider a two-tier HetNet comprising of half-duplex (HD) massive multi-antenna macrocell base stations (MBSs) and dual-antenna FD small cell base stations (SBSs) to support UL and DL transmissions of FD user equipments (UEs). Each FD UE is first associated to one MBS/SBS, based on the mean maximum received power (MMP) scheme or maximum received power (MRP) to harvest energy. During the consecutive data transmission phase, UEs choose to receive DL traffic from the same MBSs/SBSs as that associated with during energy harvesting phase, and send UL traffic through the same/another SBS. Leveraging tools from the stochastic geometry, we develop an analytical framework to analyze the average harvested energy and derive expressions for the UL and DL coverage probabilities of the proposed DUDe user association schemes. Our results show that there is an optimal value for the SBS density in the wireless-powered FD HetNets, at which both DL and UL coverage probabilities are maximized. Moreover, by applying MMPA and MRPA scheme, wireless-powered FD HetNets with DUDe achieves up to 138.78%138.78\% and 83.37%83.37\% energy efficiency gain over the FD HetNets with DL/UL coupled user association scheme and without wireless power transfer, respectively

    Extracellular Matrix Disparities in an \u3ci\u3eNkx2-5\u3c/i\u3e Mutant Mouse Model of Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) affects almost one percent of all live births. Despite diagnostic and surgical reparative advances, the causes and mechanisms of CHD are still primarily unknown. The extracellular matrix plays a large role in cell communication, function, and differentiation, and therefore likely plays a role in disease development and pathophysiology. Cell adhesion and gap junction proteins, such as integrins and connexins, are also essential to cellular communication and behavior, and could interact directly (integrins) or indirectly (connexins) with the extracellular matrix. In this work, we explore disparities in the expression and spatial patterning of extracellular matrix, adhesion, and gap junction proteins between wild type and Nkx2-5+/R52G mutant mice. Decellularization and proteomic analysis, Western blotting, histology, immunostaining, and mechanical assessment of embryonic and neonatal wild type and Nkx2-5 mutant mouse hearts were performed. An increased abundance of collagen IV, fibronectin, and integrin β-1 was found in Nkx2-5 mutant neonatal mouse hearts, as well as increased expression of connexin 43 in embryonic mutant hearts. Furthermore, a ventricular noncompaction phenotype was observed in both embryonic and neonatal mutant hearts, as well as spatial disorganization of ECM proteins collagen IV and laminin in mutant hearts. Characterizing such properties in a mutant mouse model provides valuable information that can be applied to better understanding the mechanisms of congenital heart disease

    Computational Design of a Novel VLP-Based Vaccine for Hepatitis B Virus

    Get PDF
    Hepatitis B virus (HBV) is a global virus responsible for a universal disease burden for millions of people. Various vaccination strategies have been developed using viral vector, nucleic acid, protein, peptide, and virus-like particles (VLPs) to stimulate favorable immune responses against HBV. Given the pivotal role of specific immune responses of hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) in infection control, we designed a VLP-based vaccine by placing the antibody-binding fragments of HBsAg in the major immunodominant region (MIR) epitope of HBcAg to stimulate multilateral immunity. A computational approach was employed to predict and evaluate the conservation, antigenicity, allergenicity, and immunogenicity of the construct. Modeling and molecular dynamics (MD) demonstrated the folding stability of HBcAg as a carrier in inserting Myrcludex and �a� determinant of HBsAg. Regions 1�50 and 118�150 of HBsAg were considered to have the highest stability to be involved in the designed vaccine. Molecular docking revealed appropriate interactions between the B cell epitope of the designed vaccine and the antibodies. Totally, the final construct was promising for inducing humoral and cellular responses against HBV. © Copyright © 2020 Mobini, Chizari, Mafakher, Rismani and Rismani

    Biological and Clinical Relevance of Long Non-Coding RNA PCAT-1 in Cancer, A Systematic Review and Meta-Analysis

    Get PDF
    Long non-coding RNA (lncRNA) prostate cancer associated transcript 1 (PCAT-1) has been identified as a potential biomarker for the diagnosis and prognosis of various cancers. We performed this systematic review and meta-analysis to evaluate the role of dysregulation as well as the biological and clinical significance of lnc-PCAT-1 for predicting the malignancy status in several cancers. Two independent reviewers conducted an extensive search in electronic databases of Medline, Embase, Scopus, Web of Science and PubMed until the December of 2017. Five articles investigating the clinical significance of lncRNA PCAT-1, including 996 patients, were analyzed. Our results revealed that the increased PCAT-1 expression was related to overall survival (OS) (HR = 1.9, 95%CI: 1.13-3.18, P=0.015). Also, pooled results of the diagnostic data analysis demonstrated that PCAT-1 has a sensitivity of 0.59 and specificity of 0.66 for cancer diagnosis. Moreover, pooled area under curve was 0.62 (95% CI: 0.58–0.69). This meta-analysis revealed that lncRNA PCAT-1 could be served as a potential diagnostic and prognostic biomarker in various solid tumors

    Biological and clinical relevance of long non-coding RNA PCAT-1 in Cancer, A systematic review and meta-analysis

    Get PDF
    Long non-coding RNA (lncRNA) prostate cancer associated transcript 1 (PCAT-1) has been identified as a potential biomarker for the diagnosis and prognosis of various cancers. We performed this systematic review and meta-analysis to evaluate the role of dysregulation as well as the biological and clinical significance of lnc-PCAT-1 for predicting the malignancy status in several cancers. Two independent reviewers conducted an extensive search in electronic databases of Medline, Embase, Scopus, Web of Science and PubMed until the December of 2017. Five articles investigating the clinical significance of lncRNA PCAT-1, including 996 patients, were analyzed. Our results revealed that the increased PCAT-1 expression was related to overall survival (OS) (HR = 1.9, 95CI: 1.13-3.18, P=0.015). Also, pooled results of the diagnostic data analysis demonstrated that PCAT-1 has a sensitivity of 0.59 and specificity of 0.66 for cancer diagnosis. Moreover, pooled area under curve was 0.62 (95 CI: 0.58-0.69). This meta-analysis revealed that lncRNA PCAT-1 could be served as a potential diagnostic and prognostic biomarker in various solid tumors. © 2017 Asian Pacific Organization for Cancer Prevention

    Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation

    Get PDF
    This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed

    Correction to: "Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocyes during 36 weeks in rabbit model (Cell and Tissue Research, (2016), 364, 3, (559-572), 10.1007/s00441-015-2355-9)

    Get PDF
    In this paper, figure 1 and its associated text were erroneously identical to that of another article from our group (Mobini et al., 2016, Journal of Biomaterial Application, SAGE publications). Unfortunately, copyright permission to re-use figure 1 and its related data were not requested. The authors would like to apologize for any confusion caused in this regard. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature

    Delay aversion but preference for large and rare rewards in two choice tasks: implications for the measurement of self-control parameters

    Get PDF
    BACKGROUND: Impulsivity is defined as intolerance/aversion to waiting for reward. In intolerance-to-delay (ID) protocols, animals must choose between small/soon (SS) versus large/late (LL) rewards. In the probabilistic discount (PD) protocols, animals are faced with choice between small/sure (SS) versus large/luck-linked (LLL) rewards. It has been suggested that PD protocols also measure impulsivity, however, a clear dissociation has been reported between delay and probability discounting. RESULTS: Wistar adolescent rats (30- to 46-day-old) were tested using either protocol in drug-free state. In the ID protocol, animals showed a marked shift from LL to SS reward when delay increased, and this despite adverse consequences on the total amount of food obtained. In the PD protocol, animals developed a stable preference for LLL reward, and maintained it even when SS and LLL options were predicted and demonstrated to become indifferent. We demonstrate a clear dissociation between these two protocols. In the ID task, the aversion to delay was anti-economical and reflected impulsivity. In the PD task, preference for large reward was maintained despite its uncertain delivery, suggesting a strong attraction for unitary rewards of great magnitude. CONCLUSION: Uncertain delivery generated no aversion, when compared to delays producing an equivalent level of large-reward rarefaction. The PD task is suggested not to reflect impulsive behavior, and to generate patterns of choice that rather resemble the features of gambling. In summary, present data do indicate the need to interpret choice behavior in ID and PD protocols differently

    Serotonin Differentially Regulates Short- and Long-Term Prediction of Rewards in the Ventral and Dorsal Striatum

    Get PDF
    BACKGROUND: The ability to select an action by considering both delays and amount of reward outcome is critical for maximizing long-term benefits. Although previous animal experiments on impulsivity have suggested a role of serotonin in behaviors requiring prediction of delayed rewards, the underlying neural mechanism is unclear. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the role of serotonin in the evaluation of delayed rewards, we performed a functional brain imaging experiment in which subjects chose small-immediate or large-delayed liquid rewards under dietary regulation of tryptophan, a precursor of serotonin. A model-based analysis revealed that the activity of the ventral part of the striatum was correlated with reward prediction at shorter time scales, and this correlated activity was stronger at low serotonin levels. By contrast, the activity of the dorsal part of the striatum was correlated with reward prediction at longer time scales, and this correlated activity was stronger at high serotonin levels. CONCLUSIONS/SIGNIFICANCE: Our results suggest that serotonin controls the time scale of reward prediction by differentially regulating activities within the striatum
    corecore