284 research outputs found

    S-wave eta'-proton FSI; phenomenological analysis of near-threshold production of pi0, eta, and eta' mesons in proton-proton collisions

    Full text link
    We describe a novel technique for comparing total cross sections for the reactions pp --> pp pi(0), pp --> pp eta, and pp --> pp eta' close to threshold. The initial and final state proton-proton interactions are factored out of the total cross section, and the dependence of this reduced cross section on the volume of phase space is discussed. Different models of the proton-proton interaction are compared. We argue that the scattering length of the S-wave eta'-proton interaction is of the order of 0.1 fm.Comment: 10 pages, 5 figure

    Energy Dependence of the Near-Threshold Total Cross-Section for the pp --> pp eta' Reaction

    Full text link
    Total cross sections for the pp --> pp eta' reaction have been measured in the excess energy range from Q = 1.53 MeV to Q = 23.64 MeV. The experiment has been performed at the internal installation COSY-11 using a stochastically cooled proton beam of the COoler SYnchrotron COSY and a hydrogen cluster target. The determined energy dependence of the total cross section weakens the hypothesis of the S-wave repulsive interaction between the eta' meson and the proton. New data agree well with predictions based on the phase-space distribution modified by the proton-proton final-state-interaction (FSI) only.Comment: 12 pages, 1 table, 4 figure

    Strangeness production in proton-proton and proton-nucleus collisions

    Full text link
    In these lectures we discuss the investigation of the strange meson production in proton-proton (pppp) and in proton-nucleus (pApA) reactions within an effective Lagrangian model. The kaon production proceeds mainly via the excitations of NN^*(1650), NN^*(1710), and NN^*(1720) resonant intermediate nucleonic states, in the collision of two initial state nucleons. Therefore, the strangeness production is expected to provide information about the resonances lying at higher excitation energies. For beam energies very close to the kaon production threshold the hyperon-proton final state interaction effects are quite important. Thus, these studies provide a check on the models of hyperon-nucleon interactions. The in-medium production of kaons show strong sensitivity to the self energies of the intermediate mesons.Comment: 16 pages, 9 figures, Talk presented in the workshop on Hadron Physics, Puri, India, March 7-17,200

    Excess Circulating Alternatively Activated Myeloid (M2) Cells Accelerate ALS Progression While Inhibiting Experimental Autoimmune Encephalomyelitis

    Get PDF
    Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS) in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs), representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS) and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2) cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1) mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS), revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/Low)HLA-DR(-)CD33(+)) compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might represent a risk factor and a novel target for therapeutic intervention in ALS at least at the early stage

    pppK+Λpp \to pK^{+}\Lambda reaction in an effective Lagrangian model

    Full text link
    We investigate the pppK+Λpp \to pK^{+}\Lambda reaction within an effective Lagrangian model where the contributions to the amplitudes are taken into account within the tree level. The initial interaction between the two nucleons is modeled by the exchange of π\pi, ρ\rho, ω\omega and σ\sigma mesons and the ΛK+\Lambda K^{+} production proceeds via the excitation of the NN^*(1650), NN^*(1710), NN^*(1720) baryonic resonances. The parameters of the model at the nucleon-nucleon-meson vertices are determined by fitting the elastic nucleon-nucleon scattering with an effective interaction based on the exchange of these four mesons, while those at the resonance vertices are calculated from the known decay widths of the resonances as well as the vector meson dominance model. Available experimental data is described well by this approach. The one-pion-exchange diagram dominates the production process at both higher and lower beam energies. The ρ\rho and ω\omega meson exchanges make negligible contributions. However, the σ\sigma-exchange processes contribute substantially to the total cross sections at lower beam energies. The excitation of the NN^*(1710) and NN^*(1650) resonances dominate this reaction at beam momenta above and below 3 GeV/c respectively. The interference among the amplitudes of various resonance excitation processes is significant. For beam energies very close to the K+K^{+} production threshold the hyperon-proton final state interaction effects are quite important. The data is selective about the model used to describe the low energy scattering of the two final state baryons.Comment: Revised version, to appear in Phys. Rev.

    Evolutionary explanations in medical and health profession courses: are you answering your students' "why" questions?

    Get PDF
    BACKGROUND: Medical and pre-professional health students ask questions about human health that can be answered in two ways, by giving proximate and evolutionary explanations. Proximate explanations, most common in textbooks and classes, describe the immediate scientifically known biological mechanisms of anatomical characteristics or physiological processes. These explanations are necessary but insufficient. They can be complemented with evolutionary explanations that describe the evolutionary processes and principles that have resulted in human biology we study today. The main goal of the science of Darwinian Medicine is to investigate human disease, disorders, and medical complications from an evolutionary perspective. DISCUSSION: This paper contrasts the differences between these two types of explanations by describing principles of natural selection that underlie medical questions. Thus, why is human birth complicated? Why does sickle cell anemia exist? Why do we show symptoms like fever, diarrhea, and coughing when we have infection? Why do we suffer from ubiquitous age-related diseases like arteriosclerosis, Alzheimer's and others? Why are chronic diseases like type II diabetes and obesity so prevalent in modern society? Why hasn't natural selection eliminated the genes that cause common genetic diseases like hemochromatosis, cystic fibrosis, Tay sachs, PKU and others? SUMMARY: In giving students evolutionary explanations professors should underscore principles of natural selection, since these can be generalized for the analysis of many medical questions. From a research perspective, natural selection seems central to leading hypotheses of obesity and type II diabetes and might very well explain the occurrence of certain common genetic diseases like cystic fibrosis, hemochromatosis, Tay sachs, Fragile X syndrome, G6PD and others because of their compensating advantages. Furthermore, armed with evolutionary explanations, health care professionals can bring practical benefits to patients by treating their symptoms of infection more specifically and judiciously. They might also help curtail the evolutionary arms race between pathogens and antibiotic defenses

    Role of N*(1650) in the near threshold pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions

    Full text link
    We investigate the pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions at beam energies near their thresholds within an effective Lagrangian model, where the strangeness production proceeds via the excitation of N*(1650), N*(1710), and N*(1720) baryonic resonances. It is found that the NN^*(1650) resonance dominates both these reactions at near threshold energies. The contributions from this resonance together with the final state interaction among the outgoing particles are able to explain the observed beam energy dependence of the ratio of the cross sections of the two reactions in the near threshold region.Comment: Revised version, Fig. 4 is updated with the revised data, to appear in Phys. Rev. C (Rapid Communications
    corecore