1,020 research outputs found
Layering and wetting transitions for an SOS interface
We study the solid-on-solid interface model above a horizontal wall in three
dimensional space, with an attractive interaction when the interface is in
contact with the wall, at low temperatures. There is no bulk external field.
The system presents a sequence of layering transitions, whose levels increase
with the temperature, before reaching the wetting transition.Comment: 61 pages, 6 figures. Miscellaneous corrections and changes, primarily
in Section 4. Figure 5 added
Layering in the Ising model
We consider the three-dimensional Ising model in a half-space with a boundary
field (no bulk field). We compute the low-temperature expansion of layering
transition lines
A lattice model for the line tension of a sessile drop
Within a semi--infinite thre--dimensional lattice gas model describing the
coexistence of two phases on a substrate, we study, by cluster expansion
techniques, the free energy (line tension) associated with the contact line
between the two phases and the substrate. We show that this line tension, is
given at low temperature by a convergent series whose leading term is negative,
and equals 0 at zero temperature
In situ visualization of Ni-Nb bulk metallic glasses phase transition
We report the results of the Ni-based bulk metallic glass structural
evolution and crystallization behavior in situ investigation. The X-ray
diffraction (XRD), transmission electron microscopy (TEM), nano-beam
diffraction (NBD), differential scanning calorimetry (DSC), radial distribution
function (RDF) and scanning probe microscopy/spectroscopy (STM/STS) techniques
were applied to analyze the structure and electronic properties of Ni63.5Nb36.5
glasses before and after crystallization. It was proved that partial surface
crystallization of Ni63.5Nb36.5 can occur at the temperature lower than for the
full sample crystallization. According to our STM measurements the primary
crystallization is originally starting with the Ni3Nb phase formation. It was
shown that surface crystallization drastically differs from the bulk
crystallization due to the possible surface reconstruction. The mechanism of
Ni63.5Nb36.5 glass alloy 2D-crystallization was suggested, which corresponds to
the local metastable (3x3)-Ni(111) surface phase formation. The possibility of
different surface nano-structures development by the annealing of the
originally glassy alloy in ultra high vacuum at the temperature lower, than the
crystallization temperature was shown. The increase of mean square surface
roughness parameter Rq while moving from glassy to fully crystallized state can
be caused by concurrent growth of Ni3Nb and Ni6Nb7 bulk phases. The simple
empirical model for the estimation of Ni63.5Nb36.5 cluster size was suggested,
and the obtained values (7.64 A, 8.08 A) are in good agreement with STM
measurements data (8 A-10 A)
Crucial role of sidewalls in velocity distributions in quasi-2D granular gases
Our experiments and three-dimensional molecular dynamics simulations of
particles confined to a vertical monolayer by closely spaced frictional walls
(sidewalls) yield velocity distributions with non-Gaussian tails and a peak
near zero velocity. Simulations with frictionless sidewalls are not peaked.
Thus interactions between particles and their container are an important
determinant of the shape of the distribution and should be considered when
evaluating experiments on a tightly constrained monolayer of particles.Comment: 4 pages, 4 figures, Added reference, model explanation charified,
other minor change
Theoretical Characterization of the Interface in a Nonequilibrium Lattice System
The influence of nonequilibrium bulk conditions on the properties of the
interfaces exhibited by a kinetic Ising--like model system with nonequilibrium
steady states is studied. The system is maintained out of equilibrium by
perturbing the familiar spin--flip dynamics at temperature T with
completely--random flips; one may interpret these as ideally simulating some
(dynamic) impurities. We find evidence that, in the present case, the
nonequilibrium mechanism adds to the basic thermal one resulting on a
renormalization of microscopic parameters such as the probability of
interfacial broken bonds. On this assumption, we develop theory for the
nonequilibrium "surface tension", which happens to show a non--monotonous
behavior with a maximum at some finite T. It ensues, in full agreement with
Monte Carlo simulations, that interface fluctuations differ qualitatively from
the equilibrium case, e.g., the interface remains rough at zero--T. We discuss
on some consequences of these facts for nucleation theory, and make some
explicit predictions concerning the nonequilibrium droplet structure.Comment: 10 pages, 7 figures, submitted to Phys. Re
Cluster expansion for abstract polymer models. New bounds from an old approach
We revisit the classical approach to cluster expansions, based on tree
graphs, and establish a new convergence condition that improves those by
Kotecky-Preiss and Dobrushin, as we show in some examples. The two ingredients
of our approach are: (i) a careful consideration of the Penrose identity for
truncated functions, and (ii) the use of iterated transformations to bound
tree-graph expansions.Comment: 16 pages. This new version, written en reponse to the suggestions of
the referees, includes more detailed introductory sections, a proof of the
generalized Penrose identity and some additional results that follow from our
treatmen
Abstract polymer models with general pair interactions
A convergence criterion of cluster expansion is presented in the case of an
abstract polymer system with general pair interactions (i.e. not necessarily
hard core or repulsive). As a concrete example, the low temperature disordered
phase of the BEG model with infinite range interactions, decaying polynomially
as with , is studied.Comment: 19 pages. Corrected statement for the stability condition (2.3) and
modified section 3.1 of the proof of theorem 1 consistently with (2.3). Added
a reference and modified a sentence at the end of sec. 2.
Pengaruh Konflik terhadap Kinerja Karyawan pada PT. Pegadaian (Persero) Manado
Conflict comes from the Latin verb configere which means to hit each other. Sociologically,conflict is defined as a social process between two or more people (or groups) where oneparty attempts to remove the other by destroying it or making it powerless. The purpose ofthis study is to determine the effect of conflicts that occur in the performance of employees atPT. Pegadaian (Persero) Manado samples taken as many as 30 respondents. Data collectionmethods used are questionnaires, interviews, and documentation. Data were analyzed usingdescriptive research method of research that is research which combine between qualitativeand quantitative method. In this research, the result of simple correlation shows strongcorrelation or influence between conflict variable and performance equal to 0,87% and basedon that calculation hence sought the amount of contribution of conflict to performance withresult of 75,69%. And in this research the authors get the result of conflict impact terhadapaemployee performance that has a positive impact. The conclusion of this research result showsthe reality of Manado Pegadaian employees handling and managing employees conflicts doneefficiently and effectively then positive impact will arise through the behavior that is seen byemployees as potential human resources with various consequences such as improving order,discipline in using work time, increasing productive cooperative relationship, work motivation.And suggestions to try to improve or sustain the application of existing conflicts through theapplication of a conscious presence of role conflict, accepting the conditions and stressfulsituations in work caused by the conflict, trying to be able to tolerate conflict, will have animpact on the improvement of employee performance
Optimality Clue for Graph Coloring Problem
In this paper, we present a new approach which qualifies or not a solution
found by a heuristic as a potential optimal solution. Our approach is based on
the following observation: for a minimization problem, the number of admissible
solutions decreases with the value of the objective function. For the Graph
Coloring Problem (GCP), we confirm this observation and present a new way to
prove optimality. This proof is based on the counting of the number of
different k-colorings and the number of independent sets of a given graph G.
Exact solutions counting problems are difficult problems (\#P-complete).
However, we show that, using only randomized heuristics, it is possible to
define an estimation of the upper bound of the number of k-colorings. This
estimate has been calibrated on a large benchmark of graph instances for which
the exact number of optimal k-colorings is known. Our approach, called
optimality clue, build a sample of k-colorings of a given graph by running many
times one randomized heuristic on the same graph instance. We use the
evolutionary algorithm HEAD [Moalic et Gondran, 2018], which is one of the most
efficient heuristic for GCP. Optimality clue matches with the standard
definition of optimality on a wide number of instances of DIMACS and RBCII
benchmarks where the optimality is known. Then, we show the clue of optimality
for another set of graph instances. Optimality Metaheuristics Near-optimal
- …
