166 research outputs found

    HCC development is associated to peripheral insulin resistance in a mouse model of NASH

    Get PDF
    NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC), even in the absence of cirrhosis, that makes NAFLD of such clinical importance. Aim: we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC. Methods: mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA) or its control (CSAA diet) and subjected to a low-dose i.p. injection of CCl 4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis. Results: CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1-3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+ CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2) and Osteopontin (SPP-1) were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors. Conclusions: the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD. © 2014 De Minicis et al

    A COST 240 benchmark test for beam propagation methods applied to an electrooptical modulator based on surface plasmons

    Get PDF
    Modeling of a waveguide polymer electrooptic (EO) modulator based on a resonant excitation of surface plasmons was used as a benchmark test for several beam propagation methods (BPM's). Wave-optical analysis of the structure is presented, and the results of four implementations of three numerical modeling methods are mutually compared and discussed

    Hepatic wound repair

    Get PDF
    BACKGROUND: Human chronic liver diseases (CLDs) with different aetiologies rely on chronic activation of wound healing that represents the driving force for fibrogenesis progression (throughout defined patterns of fibrosis) to the end stage of cirrhosis and liver failure. ISSUES: Fibrogenesis progression has a major worldwide clinical impact due to the high number of patients affected by CLDs, increasing mortality rate, incidence of hepatocellular carcinoma and shortage of organ donors for liver transplantation. BASIC SCIENCE ADVANCES: Liver fibrogenesis is sustained by a heterogeneous population of profibrogenic hepatic myofibroblasts (MFs), the majority being positive for alpha smooth muscle actin (alphaSMA), that may originate from hepatic stellate cells and portal fibroblasts following a process of activation or from bone marrow-derived cells recruited to damaged liver and, in a method still disputed, by a process of epithelial to mesenchymal transition (EMT) involving cholangiocytes and hepatocytes. Recent experimental and clinical data have identified, at tissue, cellular and molecular level major profibrogenic mechanisms: (a) chronic activation of the wound-healing reaction, (b) oxidative stress and related reactive intermediates, and (c) derangement of epithelial-mesenchymal interactions. CLINICAL CARE RELEVANCE: Liver fibrosis may regress following specific therapeutic interventions able to downstage or, at least, stabilise fibrosis. In cirrhotic patients, this would lead to a reduction of portal hypertension and of the consequent clinical complications and to an overall improvement of liver function, thus extending the complication-free patient survival time and reducing the need for liver transplantation. CONCLUSION: Emerging mechanisms and concepts related to liver fibrogenesis may significantly contribute to clinical management of patients affected by CLDs

    Tumor necrosis factor-inducible gene 6 promotes liver regeneration in mice with acute liver injury

    Get PDF
    INTRODUCTION: Tumor necrosis factor-inducible gene 6 protein (TSG-6), one of the cytokines released by human mesenchymal stem/stromal cells (hMSC), has an anti-inflammatory effect and alleviates several pathological conditions; however, the hepatoprotective potential of TSG-6 remains unclear. We investigated whether TSG-6 promoted liver regeneration in acute liver failure. METHODS: The immortalized hMSC (B10) constitutively over-expressing TSG-6 or empty plasmid (NC: Negative Control) were established, and either TSG-6 or NC-conditioned medium (CM) was intraperitoneally injected into mice with acute liver damage caused by CCl(4). Mice were sacrificed at 3 days post-CM treatment. RESULTS: Higher expression and the immunosuppressive activity of TSG-6 were observed in CM from TSG-6-hMSC. The obvious histomorphological liver injury and increased level of liver enzymes were shown in CCl(4)-treated mice with or without NC-CM, whereas those observations were markedly ameliorated in TSG-6-CM-treated mice with CCl(4). Ki67-positive hepatocytic cells were accumulated in the liver of the CCl(4) + TSG-6 group. RNA analysis showed the decrease in both of inflammation markers, tnfα, il-1β, cxcl1 and cxcl2, and fibrotic markers, tgf-β1, α-sma and collagen α1, in the CCl(4) + TSG-6 group, compared to the CCl(4) or the CCl(4) + NC group. Protein analysis confirmed the lower expression of TGF-β1 and α-SMA in the CCl(4) + TSG-6 than the CCl(4) or the CCl(4) + NC group. Immunostaining for α-SMA also revealed the accumulation of the activated hepatic stellate cells in the livers of mice in the CCl(4) and CCl(4) + NC groups, but not in the livers of mice from the CCl(4) + TSG-6 group. The cultured LX2 cells, human hepatic stellate cell line, in TSG-6-CM showed the reduced expression of fibrotic markers, tgf-β1, vimentin and collagen α1, whereas the addition of the TSG-6 antibody neutralized the inhibitory effect of TSG-6 on the activation of LX2 cells. In addition, cytoplasmic lipid drops, the marker of inactivated hepatic stellate cell, were detected in TSG-6-CM-cultured LX2 cells, only. The suppressed TSG-6 activity by TSG-6 antibody attenuated the restoration process in livers of TSG-6-CM-treated mice with CCl(4). CONCLUSIONS: These results demonstrated that TSG-6 contributed to the liver regeneration by suppressing the activation of hepatic stellate cells in CCl(4)-treated mice, suggesting the therapeutic potential of TSG-6 for acute liver failure. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-015-0019-z) contains supplementary material, which is available to authorized users

    The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis

    Get PDF
    Under physiological conditions, intracellular and tissue levels of reactive oxygen species (ROS) are carefully controlled and employed as fine modulators of signal transduction, gene expression and cell functional responses (redox signaling). A significant derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, plays a role in the pathogenesis of human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis, including chronic liver diseases. In this chapter major concepts and mechanisms in redox signaling will be briefly recalled to introduce a number of selected examples of redox-related mechanisms that can actively contribute to critical events in the natural history of a chronic liver diseases, including induction of cell death, perpetuation of chronic inflammatory responses and fibrogenesis. A major focus will be on redox-dependent mechanisms involved in the modulation of phenotypic responses of activated, myofibroblast-like, hepatic stellate cells (HSC/MFs), still considered as the most relevant pro-fibrogenic cells operating in chronic liver diseases

    Employment of gene expression profiling to identify transcriptional regulators of hepatic stellate cells

    Get PDF
    Activated hepatic stellate cells (HSC) play a central role in scar formation that leads to liver fibrosis. The molecular mechanisms underlying this process are not fully understood. Microarray and bioinformatics analyses have proven to be useful in identifying transcription factors that regulate cellular processes such as cell differentiation. Using oligonucleotide microarrays, we performed transcriptional analyses of activated human HSC cultured on Matrigel-coated tissue culture dishes. Examination of microarray data following Matrigel-induced deactivation of HSC revealed a significant down-regulation of myocardin, an important transcriptional regulator in smooth and cardiac muscle development. Thus, gene expression profiling as well as functional assays of activated HSC have provided the first evidence of the involvement of myocardin in HSC activation

    Unfolded protein response is an early, non-critical event during hepatic stellate cell activation.

    Get PDF
    Hepatic stellate cells activate upon liver injury and help at restoring damaged tissue by producing extracellular matrix proteins. A drastic increase in matrix proteins results in liver fibrosis and we hypothesize that this sudden increase leads to accumulation of proteins in the endoplasmic reticulum and its compensatory mechanism, the unfolded protein response. We indeed observe a very early, but transient induction of unfolded protein response genes during activation of primary mouse hepatic stellate cells in vitro and in vivo, prior to induction of classical stellate cell activation genes. This unfolded protein response does not seem sufficient to drive stellate cell activation on its own, as chemical induction of endoplasmic reticulum stress with tunicamycin in 3D cultured, quiescent stellate cells is not able to induce stellate cell activation. Inhibition of Jnk is important for the transduction of the unfolded protein response. Stellate cells isolated from Jnk knockout mice do not activate as much as their wild-type counterparts and do not have an induced expression of unfolded protein response genes. A timely termination of the unfolded protein response is essential to prevent endoplasmic reticulum stress-related apoptosis. A pathway known to be involved in this termination is the non-sense-mediated decay pathway. Non-sense-mediated decay inhibitors influence the unfolded protein response at early time points during stellate cell activation. Our data suggest that UPR in HSCs is differentially regulated between acute and chronic stages of the activation process. In conclusion, our data demonstrates that the unfolded protein response is a JNK1-dependent early event during hepatic stellate cell activation, which is counteracted by non-sense-mediated decay and is not sufficient to drive the stellate cell activation process. Therapeutic strategies based on UPR or NMD modulation might interfere with fibrosis, but will remain challenging because of the feedback mechanisms between the stress pathways
    corecore