10 research outputs found

    Why Should We Preserve Fishless High Mountain Lakes?

    Get PDF
    High mountain lakes are originally fishless, although many have had introductions of non-native fish species, predominantly trout, and recently also minnows introduced by fishermen that use them as live bait. The extent of these introductions is general and substantial often involving many lakes over mountain ranges. Predation on native fauna by introduced fish involves profound ecological changes since fish occupy a higher trophic level that was previously inexistent. Fish predation produces a drastic reduction or elimination of autochthonous animal groups, such as amphibians and large macroinvertebrates in the littoral, and crustaceans in the plankton. These strong effects raise concerns for the conservation of high mountain lakes. In terms of individual species, those adapted to live in larger lakes have suffered a higher decrease in the size of their metapopulation. This ecological problem is discussed from a European perspective providing examples from two study areas: the Pyrenees and the Western Italian Alps. Species-specific studies are urgently needed to evaluate the conservation status of the more impacted species, together with conservation measures at continental and regional scales, through regulation, and at local scale, through restoration actions, aimed to stop further invasive species expansions and to restore the present situation. At different high mountain areas of the world, there have been restoration projects aiming to return lakes to their native fish-free status. In these areas autochthonous species that disappeared with the introduction of fish are progressively recovering their initial distribution when nearby fish-free lakes and ponds are available

    Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification

    No full text
    Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by ≈75% and species richness of forest-using species by ≈60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by ≈40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends

    Communities of ground-living spiders in deciduous forests: Does tree species diversity matter?

    Get PDF
    Schuldt A, Fahrenholz N, Brauns M, Migge-Kleian S, Platner C, Schaefer M. Communities of ground-living spiders in deciduous forests: Does tree species diversity matter? BIODIVERSITY AND CONSERVATION. 2008;17(5):1267-1284.The relationships between species diversity and ecosystem functions are in the focus of recent ecological research. However, until now the influence of species diversity on ecosystem processes such as decomposition or mineral cycling is not well understood. In deciduous forests, spiders are an integral part of the forest floor food web. In the present study, patterns of spider diversity and community structure are related to diversity of deciduous forest stands in the Hainich National Park (Thuringia). In 2005, pitfall trapping and quantitative forest floor sampling were conducted in nine plots of forest stands with one (Diversity Level 1), three (DL 2) and five (DL 3) major deciduous tree species. Species richness, measured with both methods, as well as spider abundance in forest floor samples were highest in stands with medium diversity (DL 2) and lowest in pure beech stands (DL 1). The Shannon-Wiener index and spider numbers in pitfall traps decreased from DL 1 to DL 3, while the Shannon-Wiener index in forest floor samples increased in the opposite direction. Spider community composition differed more strongly between single plots than between diversity levels. Altogether, no general relationship between increasing tree species diversity and patterns of diversity and abundance in spider communities was found. It appears that there is a strong influence of single tree species dominating a forest stand and modifying structural habitat characteristics such as litter depth and herb cover which are important for ground-living spiders

    Mites in Soil and Litter Systems

    No full text
    corecore