30 research outputs found
Effect of population structure corrections on the results of association mapping tests in complex maize diversity panels
Association mapping of sequence polymorphisms underlying the phenotypic variability of quantitative agronomical traits is now a widely used method in plant genetics. However, due to the common presence of a complex genetic structure within the plant diversity panels, spurious associations are expected to be highly frequent. Several methods have thus been suggested to control for panel structure. They mainly rely on ad hoc criteria for selecting the number of ancestral groups; which is often not evident for the complex panels that are commonly used in maize. It was thus necessary to evaluate the effect of the selected structure models on the association mapping results. A real maize data set (342 maize inbred lines and 12,000 SNPs) was used for this study. The panel structure was estimated using both Bayesian and dimensional reduction methods, considering an increasing number of ancestral groups. Effect on association tests depends in particular on the number of ancestral groups and on the trait analyzed. The results also show that using a high number of ancestral groups leads to an over-corrected model in which all causal loci vanish. Finally the results of all models tested were combined in a meta-analysis approach. In this way, robust associations were highlighted for each analyzed trait
Comparative evolutionary genetics of deleterious load in sorghum and maize
Sorghum and maize share a close evolutionary history that can be explored through comparative genomics1,2. To perform a large-scale comparison of the genomic variation between these two species, we analysed ~13 million variants identi- fied from whole-genome resequencing of 499 sorghum lines together with 25 million variants previously identified in 1,218 maize lines. Deleterious mutations in both species were prev- alent in pericentromeric regions, enriched in non-syntenic genes and present at low allele frequencies. A comparison of deleterious burden between sorghum and maize revealed that sorghum, in contrast to maize, departed from the domestication-cost hypothesis that predicts a higher deleterious burden among domesticates compared with wild lines. Additionally, sorghum and maize population genetic summary statistics were used to predict a gene deleterious index with an accuracy greater than 0.5. This research represents a key step towards understanding the evolutionary dynamics of deleterious variants in sorghum and provides a comparative genomics framework to start prioritizing these variants for removal through genome editing and breeding
The genetic architecture of genome‐wide recombination rate variation in allopolyploid wheat revealed by nested association mapping
Deleterious alleles in the context of domestication, inbreeding, and selection
Each individual has a certain number of harmful mutations in its genome. These mutations can lower the fitness of the individual carrying them, dependent on their dominance and selection coefficient. Effective population size, selection, and admixture are known to affect the occurrence of such mutations in a population. The relative roles of demography and selection are a key in understanding the process of adaptation. These are factors that are potentially influenced and confounded in domestic animals. Here, we hypothesize that the series of events of bottlenecks, introgression, and strong artificial selection associated with domestication increased mutational load in domestic species. Yet, mutational load is hard to quantify, so there are very few studies available revealing the relevance of evolutionary processes. The precise role of artificial selection, bottlenecks, and introgression in further increasing the load of deleterious variants in animals in breeding and conservation programmes remains unclear. In this paper, we review the effects of domestication and selection on mutational load in domestic species. Moreover, we test some hypotheses on higher mutational load due to domestication and selective sweeps using sequence data from commercial pig and chicken lines. Overall, we argue that domestication by itself is not a prerequisite for genetic erosion, indicating that fitness potential does not need to decline. Rather, mutational load in domestic species can be influenced by many factors, but consistent or strong trends are not yet clear. However, methods emerging from molecular genetics allow discrimination of hypotheses about the determinants of mutational load, such as effective population size, inbreeding, and selection, in domestic systems. These findings make us rethink the effect of our current breeding schemes on fitness of populations
Selective constraints in cold‐region wild boars may defuse the effects of small effective population size on molecular evolution of mitogenomes
Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize
Deleterious alleles have long been proposed to play an important role in patterning phenotypic variation and are central to commonly held ideas explaining the hybrid vigor observed in the offspring of a cross between two inbred parents. We test these ideas using evolutionary measures of sequence conservation to ask whether incorporating information about putatively deleterious alleles can inform genomic selection (GS) models and improve phenotypic prediction. We measured a number of agronomic traits in both the inbred parents and hybrids of an elite maize partial diallel population and re-sequenced the parents of the population. Inbred elite maize lines vary for more than 350,000 putatively deleterious sites, but show a lower burden of such sites than a comparable set of traditional landraces. Our modeling reveals widespread evidence for incomplete dominance at these loci, and supports theoretical models that more damaging variants are usually more recessive. We identify haplotype blocks using an identity-by-decent (IBD) analysis and perform genomic prediction analyses in which we weigh blocks on the basis of complementation for segregating putatively deleterious variants. Cross-validation results show that incorporating sequence conservation in genomic selection improves prediction accuracy for grain yield and other fitness-related traits as well as heterosis for those traits. Our results provide empirical support for an important role for incomplete dominance of deleterious alleles in explaining heterosis and demonstrate the utility of incorporating functional annotation in phenotypic prediction and plant breeding
Correction: Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize
Correction: Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize.
[This corrects the article DOI: 10.1371/journal.pgen.1007019.]
General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents
KEY MESSAGE: General and specific combining abilities of maize hybrids between 288 inbred lines and three tester lines were highly related to population structure and genetic distance inferred from SNP data. Many studies have attempted to provide reliable and quick methods to identify promising parental lines and combinations in hybrid breeding programs. Since the 1950s, maize germplasm has been organized into heterotic groups to facilitate the exploitation of heterosis. Molecular markers have proven efficient tools to address the organization of genetic diversity and the relationship between lines or populations. The aim of the present work was to investigate to what extent marker-based evaluations of population structure and genetic distance may account for general (GCA) and specific (SCA) combining ability components in a population composed of 800 inter and intra-heterotic group hybrids obtained by crossing 288 inbred lines and three testers. Our results illustrate a strong effect of groups identified by population structure analysis on both GCA and SCA components. Including genetic distance between parental lines of hybrids in the model leads to a significant decrease of SCA variance component and an increase in GCA variance component for all the traits. The latter suggests that this approach can be efficient to better estimate the potential combining ability of inbred lines when crossed with unrelated lines, and limits the consequences of tester choice. Significant residual GCA and SCA variance components of models taking into account structure and/or genetic distance highlight the variation available for breeding programs within structure groups
