2,435 research outputs found

    Dredging: Making Waves for Commerce or Environmental Destruction

    Get PDF

    But What Does “It” Mean: An Analysis of Feminist & Mainstream Pornographies

    Get PDF
    In this project, I am interested in how we as a culture talk and make stories about heterosexual non-fetish pornography that contains fellatio scenes. Fellatio, being a site of social power and relation, can be conceptualized and portrayed in different ways based on the ideology and intentions of the context a text portraying fellatio it is created in. In this project I reasoned that mainstream pornography and feminist pornography would show fellatio in different ways, revealing the basic differences in each genre’s content and execution. To this effect, I analyzed six films from both feminist and mainstream pornographies and have concluded that a more effective naming and method of analysis of pornography is needed. Textual analysis in pornography needs to blossom up and become a part of a larger method that is more variegated; something that includes other strands of conversation as it and after it analyzes the text itself. A fusion of audience, structural and textual analysis and affective study is one of the ways this project points to for how media scholars could find a new way to analyze pornography texts. This matters because we as selves “begin” instead in the multitude of ways media affects our being. The very outermost parts of our selves begin in interaction with the media products around us and our creations of and with communications. This is why it is important to delve into the way we perform meaning making of all media-- including pornograph

    ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo

    Full text link
    (abbreviated) We aim to study the inner wind of the well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have pointed toward a non-homogeneous mass-loss process: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and multi-concentric shells are detected beyond 1". We present the first ALMA Cycle 0 band 9 data around 650 GHz. The full-resolution data have a spatial resolution of 0".42x0".24, allowing us to study the morpho-kinematical structure within ~6". Results: We have detected 25 molecular lines. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and suggest that the wind velocity increases rapidly from about 5 R* almost reaching the terminal velocity at ~11 R*. The channel maps for the brighter lines show a complex structure; specifically for the 13CO J=6-5 line different arcs are detected within the first few arcseconds. The curved structure present in the PV map of the 13CO J=6-5 line can be explained by a spiral structure in the inner wind, probably induced by a binary companion. From modeling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of ~10-20 deg to the North-East and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or ~8.2 R*). We tentatively estimate that the companion is an unevolved low-mass main-sequence star. The ALMA data hence provide us for the first time with the crucial kinematical link between the dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen at arcsecond scale.Comment: 22 pages, 18 Figures, Astronomy & Astrophysic

    The Dark Energy Equation of State using Alternative High-z Cosmic Tracers

    Full text link
    We propose to use alternative cosmic tracers to measure the dark energy equation of state and the matter content of the Universe [w(z) & Omega_m]. Our proposed method consists of two components: (a) tracing the Hubble relation using HII galaxies which can be detected up to very large redshifts, z~4, as an alternative to supernovae type Ia, and (b) measuring the clustering pattern of X-ray selected AGN at a median redshift of z~1. Each component of the method can in itself provide interesting constraints on the cosmological parameters, especially under our anticipation that we will reduce the corresponding random and systematic errors significantly. However, by joining their likelihood functions we will be able to put stringent cosmological constraints and break the known degeneracies between the dark energy equation of state (whether it is constant or variable) and the matter content of the universe and provide a powerful and alternative route to measure the contribution to the global dynamics and the equation of state of dark energy. A preliminary joint analysis of X-ray selected AGN (based on the largest to-date XMM survey; the 2XMM) and the currently largest SNIa sample (Hicken et al.), using as priors a flat universe and the WMAP5 normalization of the power-spectrum, provides: Omega_m=0.27+-0.02 and w=-0.96+-0.07. Equivalent and consistent results are provided by the joint analysis of X-ray selected AGN clustering and the latest Baryonic Acoustic Oscillation measures, providing: Omega_m=0.27+-0.02 and w=-0.97+-0.04.Comment: Different versions of this paper appear in the "Dark Universe" conference (Paris, July 2009) and in the "1st Mediterranean Conference in Classical & Quantum Gravity" (invited

    Evidence of Substructure in the Cluster of Galaxies A3558

    Get PDF
    We investigate the dynamical properties of the cluster of galaxies A3558 (Shapley 8). Studying a region of one square degree (\sim 3 Mpc2^2) centered on the cluster cD galaxy, we have obtained a statistically complete photometric catalog with positions and magnitudes of 1421 galaxies (down to a limiting magnitude of B21B \sim 21). This catalog has been matched to the recent velocity data obtained by Mazure et al. (1997) and from the literature, yielding a radial velocity catalog containing 322 galaxies. Our analysis shows that the position/velocity space distribution of galaxies shows significant substructure. A central bimodal core detected previously in preliminary studies is confirmed by using the Adaptive Kernel Technique and Wavelet Analysis. We show that this central bimodal subtructure is nevertheless composed of a projected feature, kinematically unrelated to the cluster, plus a group of galaxies probably in its initial merging phase into a relaxed core. The cD velocity offset with respect to the average cluster redshift, reported earlier by several authors, is completely eliminated as a result of our dynamical analysis. The untangling of the relaxed core component also allows a better, more reliable determination of the central velocity dispersion, which in turn eliminates the ``β\beta-problem'' for A3558. The cluster also shows a ``preferential'' distribution of subclumps coinciding with the direction of the major axis position angle of the cD galaxy and of the central X-ray emission ellipsoidal distribution, in agreement with an anisotropic merger scenario.Comment: 35 pages in latex, 17 figures in Postscript, accepted for publication in the Astrophysical Journa

    The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies

    Full text link
    We present CO observations of a large sample of ultraluminous IR galaxies out to z = 0.3. Most of the galaxies are interacting, but not completed mergers. All but one have high CO(1-0) luminosities, log(Lco [K-km/s-pc^2]) = 9.92 +/- 0.12. The dispersion in Lco is only 30%, less than that in the FIR luminosity. The integrated CO intensity correlates Strongly with the 100 micron flux density, as expected for a black body model in which the mid and far IR radiation are optically thick. We use this model to derive sizes of the FIR and CO emitting regions and the enclosed dynamical masses. Both the IR and CO emission originate in regions a few hundred parsecs in radius. The median value of Lfir/Lco = 160 Lsun/(K-km/s-pc^2), within a factor of two of the black body limit for the observed FIR temperatures. The entire ISM is a scaled up version of a normal galactic disk with densities a factor of 100 higher, making even the intercloud medium a molecular region. Using three different techniques of H2 mass estimation, we conclude that the ratio of gas mass to Lco is about a factor of four lower than for Galactic molecular clouds, but that the gas mass is a large fraction of the dynamical mass. Our analysis of CO emission reduces the H2 mass from previous estimates of 2-5e10 Msun to 0.4-1.5e10 Msun, which is in the range found for molecular gas rich spiral galaxies. A collision involving a molecular gas rich spiral could lead to an ultraluminous galaxy powered by central starbursts triggered by the compression of infalling preexisting GMC's.Comment: 34 pages LaTeX with aasms.sty, 14 Postscript figures, submitted to ApJ Higher quality versions of Figs 2a-f and 7a-c available by anonymous FTP from ftp://sbast1.ess.sunysb.edu/solomon/

    Arp 302: Non-starburst Luminous Infrared Galaxies

    Get PDF
    Arp 302, a luminous infrared source (L_{IR} = 4.2x10^{11} Lsun), consisting of two spiral galaxies (VV340A and VV340B) with nuclear separation of 40'', has the highest CO luminosity known. Observations with the BIMA array at 5'' X 7'' resolution reveal that the CO emission is extended over 23.0 kpc in the edge-on spiral galaxy, VV340A, corresponding to 6.7x10^{10} Msun of H_2. In the companion face-on galaxy, VV340B, the CO emission is extended over ~10.0 kpc, with 1.1x10^{10} Msun of H_2. The large CO extent is in strong contrast to starburst systems, such as Arp 220, in which the CO extent is typically \le 1 kpc. Furthermore, LIR/ML_{IR}/M(H_2) is found to be \le 6.0 Lsun/Msun throughout both galaxies. Thus the high IR luminosity of Arp 302 is apparently not due to starbursts in the nuclear regions, but is due to its unusually large amount of molecular gas forming stars at a rate similar to giant molecular clouds in the Milky Way disk. Arp 302 consists of a pair of very gas-rich spiral galaxies that may be interacting and in a phase before a likely onset of starbursts.Comment: AAS Latex plus two postscript figures. ApJ Letters (accepted

    GGD 37: An Extreme Protostellar Outflow

    Get PDF
    We present the first Spitzer-IRS spectral maps of the Herbig-Haro flow GGD 37 detected in lines of [Ne III], [O IV], [Ar III], and [Ne v]. The detection of extended [O IV] (55 eV) and some extended emission in [Ne v] (97 eV) indicates a shock temperature in excess of 100,000 K, in agreement with X-ray observations, and a shock speed in excess of 200 km s(-1). The presence of an extended photoionization or collisional ionization region indicates that GGD 37 is a highly unusual protostellar outflow.Jet Propulsion Laboratory, under NASA 1407NASA 1257184Jet Propulsion Laboratory (JPL) 960803University of Rochester 31419-5714Astronom
    corecore