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ABSTRACT

An analysis is presented of the coupled aerodynamic and
radiation field in a plume mixing region, including the effects
of viscosity, diffusion, conductive, convective and normal
radiative heat transfer as well as radiative heat losses from
the flow. The formulation of the chemical heat release is
based on the use of the finite rate reactions of the relevant
chemical species or of.the "overall reaction" simplifications
useful for treatment of the higher hydrocarbons. The radiative
transport equation is treated in the optically "intermediate"
case assuming carbon as the principal emitter and thereby
justifying a "gray gas" treatment. Scattering is neglected
because of the large wavelength to particle size encountered.
The radiation transport equation is treated on the basis of
both the plane stratified model and of the curved stratified

model and the area of applicability of each is discussed.
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RADIATION FROM CARBON IN A ROCKET PLUME

MIXING REGION WITH COUPLED CONVECTIVE
AND RADTIATIVE ENERGY FLUXES AND

GENERAL OPTICAL THICKNESS

by S. Slutsky
J. D. Melnick

I. INTRODUCTION

A problem of importance in the design of larger rocket
vehicles is the estimation of the radiant heat transfer from
the exhaust plume to the base of the vehicle. 1In one of the
configurations of interest the exhaust gases result from the
combustion of the fuel-rich RP1-LOX system. Consequently,
combustible components, including solid carbon, are present.
The products mix and react with the ambient air along the
plume boundary producing a high temperature radiating layer.
The most important radiating species will be carbon, which
cloéely resembles a black body emitter. By contrast, the
emissivities of H.,O and CO,, the next most important radia-

2 2
. . . . (5,6)
tion emitters, will be an order of magnitude lower . If,



however, the concentration of carbon particles is sufficiently
low, the rotation-vibration bands of CO, COZ' and particularly

H20(7), will become the significant radiation sources.

In the present investigation it is assumed that the
carbon cloud is the principal emitter and is composed of par-
ticles having effective diameters ranging from 100 to 1000
angstroms(l), which have the local temperature and velocity
of the local gas phase flow. The carbon particles are assumed
to have temperature levels of 2500° K or less.

Since the carbon particles are roughly spherical of less
than 0.1 p diameter, the density number of the carbon particle
"gas" is about 6xlO14 per gram-mole. Defining a mean free path
for collisions of the carbon particles leads to a value of 1
mm., smaller than any physically relevant dimension of the flow.
Consequently the carbon gas is assumed to obey the continuum
gas—-dynamic and radiative transfer equations. On the other hand,
the interaction of the carbon with the radiation field can be
treated by classical electromagnetic theory due to the large

particle size relative to molecular dimensions. In consequence,

the wavelength dependence of the absorption coefficient is con-



tinuous, i.e., the permissible energy levels of the system are
continuous, as contrasted with the discrete rotation-vibration
energy values of molecules which are governed by the Schrodinger
equation. From the black body intensity curve at 22500K., the
range of wavelength ) of interest is 1.0 to 10 microns, which
is far greater than the particle size. This has the very
iﬁportant consequence of eliminating scattering as a significant
phenomenon in carbon clouds(l).

The principle assumptions in the present formulation of
the radiative transfer equation are:

1. the gray gas approximation is appropriate

2. the system is in local thermodynamic equilibrium

3. within the plume the radiative flux components parallel
to the layer are negligible compared to the flux component normal
to the layer.

Under the gray gas approximation the average is taken of
the absorption coefficient over the relevant range of wave-
lengths, thereby eliminating the need to integrate the wave-
length-dependent intensity to obtain the total intensity. To

obtain % the wavelength-dependent absorption coefficient is

I



avefaged over the wavelength range of 1.0 py to 10 u.

The local thermodynamic equilibrium assumption is that
the emitted radiation intensity is detérmined by the local
thermal state of the medium at the temperature T. Thus the
radiation source function is j = ¥xB with B = 0T4, where ©
is the Stefan-Boltzmann constant.

(2)

Siddall and McGrath give the form of p_% at T = 2250°K

(8)

for amorphous carbon. Huffaker indicates possible experi-
mental discrepancies from this theoretically predicted absorp-
tion coefficient at the expected temperatures. For the present
investigation, the Siddall and McGrath equation, which is based
on the D.C. conductivity of small absorbing spheres of baked
electrode carbon is used but can be replaced when more appropr-
iate formulas are available. This prescription for the absorp-
tion coefficient is given by:

-«

-1
pcnx = 36MPF(A)X = ka) ' (1)

where, for 1lu < A < 10y,

o = 0.906 + 0.283 4inA.
ka = 367MPF(X = 1u).
P = average volume of particles per unit volume of gas,

pc/é.



pc = gas density of carbon species.
6 = solid density of carbon particles = 2 gm/cm3 .
F()) = f(nl,nz).

nl and n2 are obtained from the work

from a set of two equations which give ny
the real and imaginary parts of the index
functions of A. F()), derived for carbon
is defined in the Appendix.

Thus for the gray gas assumption, an

over the wavelength range of interest may

of Stull and Plass(l)

and n,. respectively

of refraction, as

spheres by Hawksley(3)

average absorptivity

be defined as follows:

|

T 1lop

w = 6TPQsL) ax

A ) | ka (2)

max 4..1“ .

where
hc
(3)

A is the wavelength of maximum emission given

max

by Wien's Law.

h = Planck's constant.

0
Il

speed of light.

W‘
n

Boltzman constant.



The third principalvassumption regarding the direction
of the radiative flux vector is dependent on the boundary
layer nature of the flow and is crucial for the validity of
the mathematical and numerical technigque employed for the
solution of the coupled system of gas radiation and flow.
According to this assumption, the free carbon, which is the
principal luminous emitter, is injected into the F-1 engine
plume along with other combustible gases such as CO, free
kerosene and free H2, at the dividing streamline between the
main nozzle flow and the external free airstream. When the
oxygen and the fuels diffuse across the dividing streamline,
combustion results and the free carbon becomes incandescent.

It is assumed in the present study that the mixing
mechanism can be treated by boundary layer theory to approx-
imate the interaction between the engine jet exhaust and the
external free airstream; and that the basic assumptions of
boundary layer theory, i.e., that the flow field gradients in
the streamwise and circumferential directions are of lower
order than the gradients normal to the stream surfaces, are

applicable. These circumstances define conditions appropriate



to the problem of thermal radiation in a stratified atmosphere,
in which the local absorption coefficient and temperature are
functions of the normal coordinate alone. This formulation
permits expression of the transfer equation as a differential
equation in one independent variable.

The use of an explicit finite difference formulation of
the conservation equations (including radiation) in the para-
bolic boundary layer approximation further simplifies the
system. Thus it becomes possible in the numerical solution
scheme to march forward, one station at a time and to treat
the radiation source term as a completely known function.

The intensity distribution is then found by solving an ordi-
nary first order differential equation containing a known
source function thereby determining the emergent radiative
energy flux. The divergence of the radiative flux is then
obtained and is added to the energy equation in order to com-

pute the flow conditions at the next station.



II. THE RADIATION FIELD WITHIN THE BOUNDARY LAYER

The radiation transfer equation along a ray travelling

through an atmosphere in local thermodynamic equilibrium is

1 dIX (s)
Py ds * Ik (s) = B)(T)’ (4)

where ds is the element of path length in the direction of
the ray, A is the wavelength of the radiation, pc is the

mass density of the carbon "gas," x, is the absorption co-

)
efficient of the carbon at the wavelength A and B)(T) is the
source strength at wavelength A and temperature T. Since
locally, T = T(s), we can write implicﬁﬂy’Bk==Bk(s).

The terms in the above equation (4) can be integrated
over the whole wavelength range of importance, which for the

temperature range of interest is the infrared region between

ly and 10u; thus,

lOy

J Ioax = 1,

lu

104 N i
) By d\ & B= —— .

lp



Then the Eq. (4) can be written

1 dI(s)

pcx ds

+ I(s) = B(s), (5)

provided a suitable mean value % can be found. One such

mean value is given by

where )max is the wavelength characterizing the Wien Law
emission peak and Al and )2 are wavelengths respectively less
and greater than Amax which suitably encompass the range of
significant luminosity.

Substitution of the Siddall and McGrath formula for
% results in the expression of Eqg. (1).

We now use the boundary layer approximation to relate
the properties P and x to the thickness coordinate of the
mixing region. In the determination of the radiation flux
we further use the idealization of local planar stratifica-

tion. However, in determining the radiation intensity to

the base, this planar model is inadequate as will be shown
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later. For the planar model the geometry is defined in terms

of a single variable, y, normal to the flow direction. Then

Q

n

i
=l

where p is the direction cosine of the light ray relative to
the normal. Because of the planar geometry My is constant

along the ray. Then Eq. (5) becomes

e S 4 1y = ) (6)
c

The boundary conditions appropriate are that at the

outer surface y = y the incoming intensity (g < 0) is zero.

2'

The outgoing radiation (g > 0) is related to the incoming

radiation at the inner boundary y Yq by the equality
I(er “) = I(Yl"'l-‘) .

Defining

y _
[ p_x dy . (7)
Y1

at = pci dy; ¢

Equation (4) becomes
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M‘g—2+I=B. (8)

The flux over all solid angles can be written

1
a(g) = 2m [ 1(&p) pdp (9)
-1
since I is assumed locally independent of aximuthal angle.

The solution of (8) is:

€.
o =V | [ sme %§+fs(r)e"’/“ Ll w>o
o

o

o]

17 (g = —e VM fs(()e"/"‘ L, p<o.
E " (10)

The integration is cut off at y = y2 instead of going out
to « since P, and hence d{/dy is zero for y > Y, and £ cannot

exceed the upper limit, gL . The flux is thus given by:
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3

1 L
alg) =2 7 f [f B(g)e (BT g
0] (o]
£ fL
+-‘[ B(C)e—(g-C)/“ at - j‘B(C)e(E_C)/“ ac } du ,
o £

(11)
and the divergence of the radiation flux to be added to the

right side of the boundary layer energy equation is given by

gL
'—g’g = 2npc(y)§ l:f B(OE, (&0)ar + fB(C)El (&-8) 4L
O (o]
.gL
+ f B(C)El (g-¢)ac - 2B(§)] ,
£ (12)
where
1 y 4
E (z)-.[Ie Z/ K S
1 5 K (13)

The incorporation of the effect of the radiation trans-
fer (assuming the plane stratified model) into the flow field

is described next.
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ITI. BOUNDARY LAYER FLOW FIELD

The mixing and radiating region of the plume field is
assumed to be initially confined for several diameters down-
stream of the nozzle lip to a relatively narrow annular region
straddling the dividing streamline. It is expedient to treat
this mixing region as a locally two-dimensional flow.

The governing gas-dynamic equations for the viscous
layer including the radiation energy flux then become:

Global continuity:

3 (ow) + 3 (pv) = 0 (14)

Species continuity:

sy se. 5 (1 %%
—1 i_ e L& 1
pu dX T v dy Oy [Pr H dy ] * pwi ) (15)
Momentums:
du, . du_-=-dp 3 Su
PuBx t PV dy ~  dx * dy [“t dy ] : (16)
Energy:
2
= W 2T 3T dp du
CoPY Ty + cppv % = U B >y
c L dor,
2 [f_g ﬂ] B ar i g
P g:wlhl T oy Pr e oy T Pr dy X: cpl oy dy

(17)




Equation of state:

o,
P = PRT L
1

b= L

In the above eQuations o, is
.th . .
i species whose production rate

weight is Mi'

and g is the radiation
The equations are

(x,¥) defined by

Thus,
. =,

bs)
x| 7
Y

|
———
|
P
wiw
"
e
<]
[
o

. (18)

the mass fraction of the

is wi and whose molecular

The mixture enthalpy is

. (19)

(20)

flux in the y-direction.

transformed to stream coordinates

(21)

(21)

(22)

14



The describing equations become:

Species Continuity:

Bai Iy Lutpu Bai .Yi 5
dx VW Pr |3 tu ) (23)
Momentum:
Su_ _ 1 [dp 9 du
3x _ _ pu (dx v Y [“tpu aw] : (24)
Energy: _
-3 _ 1 (& , 2 S e
p 3x p ldx Nk Pr oV
du 2 1 d
. ~u = - {
B pu aw) a PRV T 3w (25)
4, Lpu da,
+ = (9I Zc (——i
Pr Y] § pi o

The radiation energy flux in (x, V%) coordinates is

- £ 3
g 20p_ (W) L
3V pu

fo) o

3

L
+ f T4(C)El (L-¢)aC - 2T4(£)]
3

(26)

f T (O)E, (gL)aL + f 1 (0)E, (g-O)a

15



16

y x o (¥)aw

£ = j x p (y")dy' = ' pu (27)
¥ %
quQ pad@'

€L - ) “pu -
1

where . (28)

n pcdi

at = —p_u_—_ .

In the rectangular (x,V¥) grid, if n refers to X position and
m to ¥ position, the following explicit finite difference

scheme is used for the above parabolic differential equations:

(QE) _ Fn+1LnranLm
n+l,m

Ax - Ax

(_@E_) _ Fn Lm+l_Fn,m—l
n,m

) .2A ¥ (29)

[é (a_az)] = aan+;i(FnInH-l—FnJln)-aan_%i(Fnlm—Fnl m—l)
n,m

Y\ d¢ 1, (A\I)z
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where
Al = - ¥, & =x - X, a =L [a + a .
n+l n+l n’ n,mt% 2 n,m n,m+1l
(30)
Defining
as= ppu,

the finite difference equations become:

i i |
“+1,m “n,m _ 1 tgg [ai ot ]
Ax (AQ)Z Pr n, mths n,m+l n,m
‘ . . i
S (%21 [al ot m_1]+ (w_.)
(AY) “ln,my L2 T Y fn,m
(31)
u -u
n+llrz e = —( ):L (% t - 2 an m+ [un m+l—un m]
X Py, 1l (ay)” ’ ’

a » u -u .
n, m-% [ n,m n,m—l]

2
(AYX) (32)
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ntl,m "n,m _ 1 (QE
b x (cpa)n,m dx nt+l
c
+ . 1 1 pa [ - ]
1 1 o2 |

- 2 (c) Pr [Tn m an m—l]

(&%) p'n,m n, mt% o

2
a - .
n,m (uan+l un,m-l) 1 1 i

* 3 2 " (we) S, A,

pn’ 4(L 1Y) n.m i

T -

+ _nm + _aL n,mtl n,m—-1

(c ) c Pr 2A ¥

P nm p n,m
cp - i . (33)
; | o -

E: ln,m L n,m+1l aan—l}

1 2L ¥ )

where A n is the function on the right side of Eg. (26)
n

evaluated at (n,m).

Solving for «

u T algebraic equations
n+l,m’ n+l,m’ "n+l,m’ g q

are obtained for the .(n+l)th line in terms of quantities known

along the nth line.
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IV. RADIATION TO THE BASE REGION

In the foregoing section the temperature distribution with-
in the plume waé computed taking into account the effects of
mixing and chemical reaction as well as that of radiative
losses.

The computation of the radiation field at the base is next
determined by evaluating a surface integral over the plume,
rather than a volume integral. Thus, the radiant energy flux
from a point Q of the plume surface to a point P of the gas is

given by the integral over the solid angle.

a(p) = [ 1I(gP) cos B df (34)

where 6 is the angle between the vector QP and the normal
to the base, and I(QP) is the intensity of the radiation in
the direction QP. The element of solid angle dw can be

written

ag. = udA (35)

where u is the cosine of the angle between the normal to the
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plume surface element of area dA and the vector QP.

In order to specify the geometry for the determination of

the integral of Eq. (34), the element of surface

in Eq. (35)

is represented by that of the cone tangent to the plume at

(z,R), where R is the radius of the plume at the
z, ¢ is the cone angle of the tangent cone, r is
location of the point P of the base and ¢ is the
of the point Q of the plume (see Fig. 1). Since
tion is aXisymmetric, the azimuth angle of point

and can be set equal to zero. Using an ijk triad

axial station
the radial‘

aximuth angle
the configura-
P is arbitrary

of unit vectors,

the directions of the vector D, the normal n at the plume and

the normal ng at the base can be specified.

= A
D=%z- ? R sin $ + k (r-R cos ¥P).
- _ A A . A

n =1R tan ¢+ Jj R sin $ + k R cos .
- A
n_= -i.

B

Then the cosine values p and cos § can be determined:

cos ¢ [z tan o-R + r cos ]

ool

*n_
n

b= ol Tl

Jr;Z + r2 + R2 -2¥R cos ¥
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D - n

B
cos 0 = T—T—W——r = :
D g z2 + r + R2 ~2rR cos ¥

and the element of area dA can be expressed

dz
dA = RAY ;6;—6

The flux at point P therefore can be written

a(r) = [ R(z)z [ fluzllztano - R+ r cos 1Ay

dz .
z P [z2 + r2 + R2 ~-2rR cos ¢]2

(36)

The domain of integration includes all values of ¥ for which

z tan @-R + r cos ¥ > 0 .

Since the integrand is regular the evaluation of Eq. (36) is

straightforward and the increment dq(r) due to the plume

segment centered at zn + will be added to the sum gener-

2

ated from z = 0 to 2z 1 The radius term R(z) in the integrand
n—

is known as a result of the calculation of the plume boundary

layer. The intensity I(p,z) = I(u,yz(z)) at the outer edge of
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the plume boundary layer can be obtained according to the plane
stratified model by setting £ = gL in Eq. (10) for p > 0. This

yields

-& /U
1 (&, M) = 2e . IL B(L) cosh (‘%) %5 . (37)
O

Equation (37) is not adequate to describe the general
case of radiation to the base, because for u - 0, it goes to

the limit

I (€L.y) —#—-0* B(gL) .

Indeed the in-plane (u=0) component of intensity for any §£
also goes to the black body value B = 0T4. This defect in
the intensity distribution is a result of the infinite lateral
extent of the emitting and absorbing layer of the plane strati-
fied model.

It will be shown in the next section that the flux and
therefore the energy transfer is essentially correct, but that
the intensity field radiated at fringe angles to the plume surface
riormal {near 900) needs to be computed with due consideration of

the plume surface curvatures.
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V. RADIATION FROM A CURVED STRATIFIED REGION

If one examines a photograph of an ordinary Bunsen burner
flame, which is a good example of an axisymmetric flame with
an annular zone of luminosity near the base, one will notice
that the luminosity'appears intense near the edge of the flame

region of the photograph, and is almost negligible near the
centerline.

Luminous

San T e
J

W

View A-A

p

Since the flow is axisymmetric the greater luminosity at the
edges indicates that (for optically non-thick flames at least)
the emergent intensities at large angles from the normal cone
is relatively much more important than those components leaving

at small angles to the normal. For optically thin flames this
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is simply due to the greater geometric path length traversed by
a ray which cuts near the inner edge of the annular region of

optical activity. Nevertheless this path length does not become

n
2 A
maximum path length - —_
———
—

infinite as g - o as in the planar model. Instead, it goes
to zero after reaching a maximum. This behavior will be pre-
sented somewhat more quantitatively below.

Let us consider the intensity of the ray from point Q of
the plume surface to point P of the base. The ray QP and the
normal to the plume at Q define a plane which cuts the plume in
a section as shown in Fig. 2. At the point of intersection.of
the ray with the outer plume we can replace the curve locally
by the osculating circle which is tangent to the local plume
curve and has the same radius of curvature. The intensity

along the ray Q'P' is still given in Eq. (5).

1 dI(s)
p ds

+ I(s) = B(s) (5)
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and the emergent radiation at Q in the direction QP can be

written formally as

-§ g
17 (g) = 28 2 f < B(¢) cosh ¢ af ., (38)
O

where

tE = fs o} % ds'. (39)
Q o

The origin s=0 can be either the inner boundary of the
plume, or the point of symmetry on the ray path where I+ is
equal to I (point Q" of Fig. 3). Unfortunately s is not a
convenient variable to use. It is seen from Fig. 4 that all
plume geometric and thermodynamic properties can be conveniently
stated in terms of the local radius of curvature Rc' the distance
t inward from the outer plume boundary, and W4, the direction co-
sine of the emergent ray QP.

We obtain for the ﬁransformation from s to t

(Rc-t) dt

ds = - t
R % -2rt+ 7 °
c C

t, = R, (l - 1-p2 ) (41)

N
o

(40)




Then the emergent

radiation intensity along the ray QP is

P. (R ~-t)B(t)

_g t
+ _ <t _ Q cosh £(t,u)dt,
T (ep) = IQ (1) A/R u -2R t + tz
(42)
where
t p % (R -t )dt
o C c 1 1
g(t,p) = [ = > ' (43)
t Rc i —2Rctl + tl
tO cn(R -t)dt
A R e A
c H c
It is of interest to note that the "in-plane" component

26

of radiation at an interior point of the plume (i.e., the value

of Q" along Q"Q) is

Qu (u) = IQ" (“')

_ f o c c
- 1

Z P4
o JFRC u’ ~2R_t + t

t %x (R -t) B(t) -
p x ( ( o g(t'“)dt

(45)
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In the limit when the optical layer thickness T is very small
compared to the local radius of curvature (T << RCL some inter-
esting comparisons with the plane stratified approximation c¢an
be made. Two cases can be distinguished. First if emergent

. o .
angle is not too close to 90, i.e., when

u > /_g—-T- . (46)

R
C

and when the thickness T is.less than to = Rc(l-sin B) defined
by Eq. (41l). This set of conditions is exemplified by the ray

Q2P2 of Fig. 4.

d .
In this case ds - - ;E which is exactly the transforma-
tion appropriate to the plane stratified model.
However, when to is of the same order or less than T,

then we should write

ds - - dt (47)

2t -t
o

so that
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tO - RC '

E(t, b) =£ I vy at , (48)
-¢ t R '

+ Q o - c

I (p) = 2e % o /*-—_ B(t) cosh ¢ dt

@ o °© t, - ¢t (49)

The emergent intensity thus goes smoothly to zero as

/to, or even more.

The question of the amount of error incufred in the use
of the plane stratified model for computing radiative flux
divergence in the coupled flow energy equation can now be answered.
Thus, it is noted that the normal flux depends on those components
of the intensity with direction cosine M which are not small,

since the flux depends on the product pI(g). Thus, if u > -

/2
then the plane approximation is applicable. When U g 'EE ’
c

the contribution to the flux becomes small. It is therefore con-
cluded that the formulation used in Section III is adequate.

For the purposes of radiation to the base, the expression
of Eq. (49) or of Eq. (42) is needed for the plume edge radiative
components. This is not difficult to carry out in a digital com-

putation scheme and will be included in the computer program.
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APPENDIX

Determination of F(\A):

2
1%

n
n2 2
2

F(\) = > 32

2 2 2
[(nl + ny + 4(nl - n) ng + 1) ]

where 2 2 2 6.448 x 1032
n - nl n2 =1 + 35 5
4,062 x 10 -

3.224 x 10°2 , _3.224 x 1032
2
9.549 x 10°°-4f 5.217 x 10° -

32 32 2
- )

6.348 x 10 (1.966 x 10
33 2

(1.956 x 1032—u?)2 + 1.369 x 10 =«

31
_ 3.05 x 10 = 6(w)

2.323 x lO3 +w

6.347. % lO32 (3.70 x lOl6u9

2n, n_=
33
(1.956 x 1032—u?)2 + 1.369 x 10 u?

15

3.05 x lO31 (4.82 x 1077)

+
(2.323 x 10> 462 w

= o(w)

w = 271¢
A
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¢ = speed of light. w has units sec-l if ¢ is in cm-sec and

XA is in cm.

These equations can be written in terms of the 6(w and

¢o(w) functions as

The solution is

- o(w
nl - / 2 n ’
N 2
'B(wz‘z 8 (w)
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plume boundary
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Curve of Intersection,
(outer limit of plume)

Inner limit of plume

Osculating circle

FIG. 3. RAY PASSAGE THROUGH PLUME SECTION
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Equation (10) on Page 11 should read:

£ :
(e =B B -%Q v [ By & K uso.
O

(e

£
- - L
I (g = - e £ B(2)e/ %; . p <O




