1,483 research outputs found
The Mass-Loss Return From Evolved Stars to The Large Magellanic Cloud VI: Luminosities and Mass-Loss Rates on Population Scales
We present results from the first application of the Grid of Red Supergiant
and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved
stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed
grid of 80,843 radiative transfer (RT) models of evolved stars and
circumstellar dust shells composed of either silicate or carbonaceous dust. We
fit GRAMS models to ~30,000 Asymptotic Giant Branch (AGB) and Red Supergiant
(RSG) stars in the LMC, using 12 bands of photometry from the optical to the
mid-infrared. Our published dataset consists of thousands of evolved stars with
individually determined evolutionary parameters such as luminosity and
mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate
discriminating between Oxygen- and Carbon-rich chemistry. The global dust
injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB
stars is on the order of 1.5x10^(-5) solar masses/yr, equivalent to a total
mass injection rate (including the gas) into the ISM of ~5x10^(-3) solar
masses/yr. Carbon stars inject two and a half times as much dust into the ISM
as do O-rich AGB stars, but the same amount of mass. We determine a bolometric
correction factor for C-rich AGB stars in the K band as a function of J - K
color, BC(K) = -0.40(J-K)^2 + 1.83(J-K) + 1.29. We determine several IR color
proxies for the dust mass-loss rate (MLR) from C-rich AGB stars, such as log
(MLR) = (-18.90)/((K-[8.0])+3.37)-5.93. We find that a larger fraction of AGB
stars exhibiting the `long-secondary period' phenomenon are O-rich than stars
dominated by radial pulsations, and AGB stars without detectable mass-loss do
not appear on either the first-overtone or fundamental-mode pulsation
sequences.Comment: 19 pages, 19 figure
Morphological Properties of PPNs: Mid-IR and HST Imaging Surveys
We will review our mid-infrared and HST imaging surveys of the circumstellar
dust shells of proto-planetary nebulae. While optical imaging indirectly probes
the dust distribution via dust-scattered starlight, mid-IR imaging directly
maps the distribution of warm dust grains. Both imaging surveys revealed
preferencially axisymmetric nature of PPN dust shells, suggesting that
axisymmetry in planetary nebulae sets in by the end of the asymptotic giant
branch phase, most likely by axisymmetric superwind mass loss. Moreover, both
surveys yielded two morphological classes which have one-to-one correspondence
between the two surveys, indicating that the optical depth of circumstellar
dust shells plays an equally important role as the inclination angle in
determining the morphology of the PPN shells.Comment: 6 pages + 8 figures, to appear in the proceedings of the conference,
"Post-AGB Objects (proto-planetary nebulae) as a Phase of Stellar Evolution",
Torun, Poland, July 5-7, 2000, eds. R. Szczerba, R. Tylenda, and S.K. Gorny.
Figures have been degraded to minimize the total file siz
CO J = 2 - 1 Emission from Evolved Stars in the Galactic Bulge
We observe a sample of 8 evolved stars in the Galactic Bulge in the CO J = 2
- 1 line using the Submillimeter Array (SMA) with angular resolution of 1 - 4
arcseconds. These stars have been detected previously at infrared wavelengths,
and several of them have OH maser emission. We detect CO J = 2 - 1 emission
from three of the sources in the sample: OH 359.943 +0.260, [SLO2003] A12, and
[SLO2003] A51. We do not detect the remaining 5 stars in the sample because of
heavy contamination from the galactic foreground CO emission. Combining CO data
with observations at infrared wavelengths constraining dust mass loss from
these stars, we determine the gas-to-dust ratios of the Galactic Bulge stars
for which CO emission is detected. For OH 359.943 +0.260, we determine a gas
mass-loss rate of 7.9 (+/- 2.2) x 10^-5 M_Sun/year and a gas-to-dust ratio of
310 (+/- 89). For [SLO2003] A12, we find a gas mass-loss rate of 5.4 (+/- 2.8)
x 10^-5 M_Sun/year and a gas-to-dust ratio of 220 (+/- 110). For [SLO2003] A51,
we find a gas mass-loss rate of 3.4 (+/- 3.0) x 10^-5 M_Sun/year and a
gas-to-dust ratio of 160 (+/- 140), reflecting the low quality of our tentative
detection of the CO J = 2 - 1 emission from A51. We find the CO J = 2 - 1
detections of OH/IR stars in the Galactic Bulge require lower average CO J = 2
- 1 backgrounds.Comment: 40 pages, 16 figures, appeared in the 1 March 2013 issue of the
Astrophysical Journa
Highly efficient, tunable single photon source based on single molecules
The authors studied spatially isolated terrylene molecules immobilized in a quasiplanar optical λ/2-microresonator using confocal microscopy and spectroscopy at variable temperatures. At T = 1.8 K, they observed individual molecules relaxing into microresonator-allowed vibronic levels of their electronic ground state by emission of single fluorescence photons. Coupling the purely electronic transition of embedded molecules to the longitudinal photonic mode of the microresonator resulted in an ultimate spectral narrowing and an increased collection efficiency of the emitted single photon wave trains
On stochastic switching of bistable resonant-tunneling structures via nucleation
We estimate the critical size of the initial nucleus of the low current state
in a bistable resonant tunneling structure which is needed for this nucleus to
develop into a lateral switching front. Using the results obtained for
deterministic switching fronts, we argue that for realistic structural
parameters the critical nucleus has macroscopic dimensions and therefore is too
large to be created by stochastic electron noise.Comment: the extended version of the Comment on "Lifetime of metastable states
in resonant-tunneling structures" to appear in Phys. Rev.
Scalable register initialization for quantum computing in an optical lattice
The Mott insulator state created by loading an atomic Bose-Einstein
condensate (BEC) into an optical lattice may be used as a means to prepare a
register of atomic qubits in a quantum computer. Such architecture requires a
lattice commensurately filled with atoms, which corresponds to the insulator
state only in the limit of zero inter-well tunneling. We show that a lattice
with spatial inhomogeneity created by a quadratic magnetic trapping potential
can be used to isolate a subspace in the center which is impervious to
hole-hoping. Components of the wavefunction with more than one atom in any well
can be projected out by selective measurement on a molecular photo-associative
transition. Maintaining the molecular coupling induces a quantum Zeno effect
that can sustain a commensurately filled register for the duration of a quantum
computation.Comment: 5 pages, 2 figure
Dust composition and mass-loss return from the luminous blue variable R71 in the LMC
We present an analysis of mid-and far-infrared (IR) spectrum and spectral
energy distribution (SED) of the LBV R71 in the LMC.This work aims to
understand the overall contribution of high-mass LBVs to the total dust-mass
budget of the interstellar medium (ISM) of the LMC and compare this with the
contribution from low-mass asymptotic giant branch (AGB) stars. As a case
study, we analyze the SED of R71. We compiled all the available photometric and
spectroscopic observational fluxes from various telescopes for a wide
wavelength range (0.36 -- 250\,m). We determined the dust composition from
the spectroscopic data, and derived the ejected dust mass, dust mass-loss rate,
and other dust shell properties by modeling the SED of R71. We noted nine
spectral features in the dust shell of R71 by analyzing Spitzer spectroscopic
data. Among these, we identified three new crystalline silicate features. We
computed our model spectrum by using 3D radiative transfer code MCMax. Our
model calculation shows that dust is dominated by amorphous silicates, with
some crystalline silicates, metallic iron, and a very tiny amount of polycyclic
aromatic hydrocarbon (PAH) molecules. The presence of both silicates and PAHs
indicates that the dust has a mixed chemistry. We derived a dust mass of 0.01
M, from which we arrive at a total ejected mass of 5
M. This implies a time-averaged dust mass-loss rate of
2.510 M\,yr with an explosion about 4000 years
ago. We assume that the other five confirmed dusty LBVs in the LMC loose mass
at a similar rate, and estimate the total contribution to the mass budget of
the LMC to be 10 M\,yr, which is comparable to
the contribution by all the AGB stars in the LMC. Based on our analysis on R71,
we speculate that LBVs as a class may be an important dust source in the ISM of
the LMC.Comment: 10 pages, 6 figures, 2 table
Dust Emission from Evolved and Unevolved HII Regions in the Large Magellanic Cloud
We present a study of the dust properties of 12 classical and superbubble HII
regions in the Large Magellanic Cloud. We use infrared photometry from Spitzer
(8, 24, 70, and 160 \mum bands), obtained as part of the Surveying the Agents
of a Galaxy's Evolution (SAGE) program, along with archival spectroscopic
classifications of the ionizing stars to examine the role of stellar sources on
dust heating and processing. Our infrared observations show surprisingly little
correlation between the emission properties of the dust and the effective
temperatures or bolometric magnitudes of stars in the HII regions, suggesting
that the HII region evolutionary timescale is not on the order of the dust
processing timescale. We find that the infrared emission of superbubbles and
classical HII regions shows little differentiation between the two classes,
despite the significant differences in age and morphology. We do detect a
correlation of the 24 \mum emission from hot dust with the ratio of 70 to 160
\mum flux. This correlation can be modeled as a trend in the temperature of a
minority hot dust component, while a majority of the dust remains significantly
cooler.Comment: 15 pages, 5 figures. Accepted to Ap
- …
