1,483 research outputs found

    The Mass-Loss Return From Evolved Stars to The Large Magellanic Cloud VI: Luminosities and Mass-Loss Rates on Population Scales

    Full text link
    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer (RT) models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ~30,000 Asymptotic Giant Branch (AGB) and Red Supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published dataset consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between Oxygen- and Carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 1.5x10^(-5) solar masses/yr, equivalent to a total mass injection rate (including the gas) into the ISM of ~5x10^(-3) solar masses/yr. Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K band as a function of J - K color, BC(K) = -0.40(J-K)^2 + 1.83(J-K) + 1.29. We determine several IR color proxies for the dust mass-loss rate (MLR) from C-rich AGB stars, such as log (MLR) = (-18.90)/((K-[8.0])+3.37)-5.93. We find that a larger fraction of AGB stars exhibiting the `long-secondary period' phenomenon are O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass-loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.Comment: 19 pages, 19 figure

    Morphological Properties of PPNs: Mid-IR and HST Imaging Surveys

    Full text link
    We will review our mid-infrared and HST imaging surveys of the circumstellar dust shells of proto-planetary nebulae. While optical imaging indirectly probes the dust distribution via dust-scattered starlight, mid-IR imaging directly maps the distribution of warm dust grains. Both imaging surveys revealed preferencially axisymmetric nature of PPN dust shells, suggesting that axisymmetry in planetary nebulae sets in by the end of the asymptotic giant branch phase, most likely by axisymmetric superwind mass loss. Moreover, both surveys yielded two morphological classes which have one-to-one correspondence between the two surveys, indicating that the optical depth of circumstellar dust shells plays an equally important role as the inclination angle in determining the morphology of the PPN shells.Comment: 6 pages + 8 figures, to appear in the proceedings of the conference, "Post-AGB Objects (proto-planetary nebulae) as a Phase of Stellar Evolution", Torun, Poland, July 5-7, 2000, eds. R. Szczerba, R. Tylenda, and S.K. Gorny. Figures have been degraded to minimize the total file siz

    CO J = 2 - 1 Emission from Evolved Stars in the Galactic Bulge

    Full text link
    We observe a sample of 8 evolved stars in the Galactic Bulge in the CO J = 2 - 1 line using the Submillimeter Array (SMA) with angular resolution of 1 - 4 arcseconds. These stars have been detected previously at infrared wavelengths, and several of them have OH maser emission. We detect CO J = 2 - 1 emission from three of the sources in the sample: OH 359.943 +0.260, [SLO2003] A12, and [SLO2003] A51. We do not detect the remaining 5 stars in the sample because of heavy contamination from the galactic foreground CO emission. Combining CO data with observations at infrared wavelengths constraining dust mass loss from these stars, we determine the gas-to-dust ratios of the Galactic Bulge stars for which CO emission is detected. For OH 359.943 +0.260, we determine a gas mass-loss rate of 7.9 (+/- 2.2) x 10^-5 M_Sun/year and a gas-to-dust ratio of 310 (+/- 89). For [SLO2003] A12, we find a gas mass-loss rate of 5.4 (+/- 2.8) x 10^-5 M_Sun/year and a gas-to-dust ratio of 220 (+/- 110). For [SLO2003] A51, we find a gas mass-loss rate of 3.4 (+/- 3.0) x 10^-5 M_Sun/year and a gas-to-dust ratio of 160 (+/- 140), reflecting the low quality of our tentative detection of the CO J = 2 - 1 emission from A51. We find the CO J = 2 - 1 detections of OH/IR stars in the Galactic Bulge require lower average CO J = 2 - 1 backgrounds.Comment: 40 pages, 16 figures, appeared in the 1 March 2013 issue of the Astrophysical Journa

    Highly efficient, tunable single photon source based on single molecules

    Get PDF
    The authors studied spatially isolated terrylene molecules immobilized in a quasiplanar optical λ/2-microresonator using confocal microscopy and spectroscopy at variable temperatures. At T = 1.8 K, they observed individual molecules relaxing into microresonator-allowed vibronic levels of their electronic ground state by emission of single fluorescence photons. Coupling the purely electronic transition of embedded molecules to the longitudinal photonic mode of the microresonator resulted in an ultimate spectral narrowing and an increased collection efficiency of the emitted single photon wave trains

    On stochastic switching of bistable resonant-tunneling structures via nucleation

    Full text link
    We estimate the critical size of the initial nucleus of the low current state in a bistable resonant tunneling structure which is needed for this nucleus to develop into a lateral switching front. Using the results obtained for deterministic switching fronts, we argue that for realistic structural parameters the critical nucleus has macroscopic dimensions and therefore is too large to be created by stochastic electron noise.Comment: the extended version of the Comment on "Lifetime of metastable states in resonant-tunneling structures" to appear in Phys. Rev.

    Scalable register initialization for quantum computing in an optical lattice

    Full text link
    The Mott insulator state created by loading an atomic Bose-Einstein condensate (BEC) into an optical lattice may be used as a means to prepare a register of atomic qubits in a quantum computer. Such architecture requires a lattice commensurately filled with atoms, which corresponds to the insulator state only in the limit of zero inter-well tunneling. We show that a lattice with spatial inhomogeneity created by a quadratic magnetic trapping potential can be used to isolate a subspace in the center which is impervious to hole-hoping. Components of the wavefunction with more than one atom in any well can be projected out by selective measurement on a molecular photo-associative transition. Maintaining the molecular coupling induces a quantum Zeno effect that can sustain a commensurately filled register for the duration of a quantum computation.Comment: 5 pages, 2 figure

    Dust composition and mass-loss return from the luminous blue variable R71 in the LMC

    Get PDF
    We present an analysis of mid-and far-infrared (IR) spectrum and spectral energy distribution (SED) of the LBV R71 in the LMC.This work aims to understand the overall contribution of high-mass LBVs to the total dust-mass budget of the interstellar medium (ISM) of the LMC and compare this with the contribution from low-mass asymptotic giant branch (AGB) stars. As a case study, we analyze the SED of R71. We compiled all the available photometric and spectroscopic observational fluxes from various telescopes for a wide wavelength range (0.36 -- 250\,μ\mum). We determined the dust composition from the spectroscopic data, and derived the ejected dust mass, dust mass-loss rate, and other dust shell properties by modeling the SED of R71. We noted nine spectral features in the dust shell of R71 by analyzing Spitzer spectroscopic data. Among these, we identified three new crystalline silicate features. We computed our model spectrum by using 3D radiative transfer code MCMax. Our model calculation shows that dust is dominated by amorphous silicates, with some crystalline silicates, metallic iron, and a very tiny amount of polycyclic aromatic hydrocarbon (PAH) molecules. The presence of both silicates and PAHs indicates that the dust has a mixed chemistry. We derived a dust mass of 0.01 M_\odot, from which we arrive at a total ejected mass of \approx 5 M_\odot. This implies a time-averaged dust mass-loss rate of 2.5×\times106^{-6} M_\odot\,yr1^{-1} with an explosion about 4000 years ago. We assume that the other five confirmed dusty LBVs in the LMC loose mass at a similar rate, and estimate the total contribution to the mass budget of the LMC to be \approx 105^{-5} M_\odot\,yr1^{-1}, which is comparable to the contribution by all the AGB stars in the LMC. Based on our analysis on R71, we speculate that LBVs as a class may be an important dust source in the ISM of the LMC.Comment: 10 pages, 6 figures, 2 table

    Dust Emission from Evolved and Unevolved HII Regions in the Large Magellanic Cloud

    Full text link
    We present a study of the dust properties of 12 classical and superbubble HII regions in the Large Magellanic Cloud. We use infrared photometry from Spitzer (8, 24, 70, and 160 \mum bands), obtained as part of the Surveying the Agents of a Galaxy's Evolution (SAGE) program, along with archival spectroscopic classifications of the ionizing stars to examine the role of stellar sources on dust heating and processing. Our infrared observations show surprisingly little correlation between the emission properties of the dust and the effective temperatures or bolometric magnitudes of stars in the HII regions, suggesting that the HII region evolutionary timescale is not on the order of the dust processing timescale. We find that the infrared emission of superbubbles and classical HII regions shows little differentiation between the two classes, despite the significant differences in age and morphology. We do detect a correlation of the 24 \mum emission from hot dust with the ratio of 70 to 160 \mum flux. This correlation can be modeled as a trend in the temperature of a minority hot dust component, while a majority of the dust remains significantly cooler.Comment: 15 pages, 5 figures. Accepted to Ap
    corecore