328 research outputs found
Compensation of deep drawing tools for springback and tool-deformation
Manual tool reworking is one of the most time-consuming stages in the\ud
preparation of a deep drawing process. Finite Elements (FE) analyses are now widely\ud
applied to test the feasibility of the forming process, and with the increasing accuracy of the\ud
results, even the springback of a blank can be predicted. In this paper, the results of an FE\ud
analysis are used to carry out tool compensation for both springback and tool/press\ud
deformations. Especially when high-strength steels are used, or when large body panels are\ud
produced, tool compensation in the digital domain helps to reduce work and save time in the\ud
press workshop. A successful compensation depends on accurate and efficient FE-prediction,\ud
as well as a flexible and process-oriented compensation algorithm. This paper is divided in\ud
two sections. The first section deals with efficient modeling of tool/press deformations, but\ud
does not discuss compensation. The second section is focused on springback, but here the\ud
focus is on the compensation algorithm instead of the springback phenomenon itself
The spectral weight of the Hubbard model through cluster perturbation theory
We calculate the spectral weight of the one- and two-dimensional Hubbard
models, by performing exact diagonalizations of finite clusters and treating
inter-cluster hopping with perturbation theory. Even with relatively modest
clusters (e.g. 12 sites), the spectra thus obtained give an accurate
description of the exact results. Thus, spin-charge separation (i.e. an
extended spectral weight bounded by singularities) is clearly recognized in the
one-dimensional Hubbard model, and so is extended spectral weight in the
two-dimensional Hubbard model.Comment: 4 pages, 5 figure
Optical properties of pyrochlore oxide
We present optical conductivity spectra for
single crystal at different temperatures. Among reported pyrochlore ruthenates,
this compound exhibits metallic behavior in a wide temperature range and has
the least resistivity. At low frequencies, the optical spectra show typical
Drude responses, but with a knee feature around 1000 \cm. Above 20000 \cm, a
broad absorption feature is observed. Our analysis suggests that the low
frequency responses can be understood from two Drude components arising from
the partially filled Ru bands with different plasma frequencies and
scattering rates. The high frequency broad absorption may be contributed by two
interband transitions: from occupied Ru states to empty bands
and from the fully filled O 2p bands to unoccupied Ru states.Comment: 4 pages, 6 figure
Inter-site Coulomb interaction and Heisenberg exchange
Based on exact diagonalization results for small clusters we discuss the
effect of inter-site Coulomb repulsion in Mott-Hubbard or charge transfer
insulators. Whereas the exchange constant J for direct exchange is
substantially enhanced by inter-site Coulomb interaction, that for
superexchange is suppressed. The enhancement of J in the single-band models
holds up to the critical value for the charge density wave (CDW) instability,
thus opening the way for large values of J. Single-band Hubbard models with
sufficiently strong inter-site repulsion to be near a CDW instability thus may
provide `physical' realizations of t-J like models with the `unphysical'
parameter ratio J/t=1.Comment: Revtex file, 4 PRB pages, with 5 embedded ps-files. To appear in PRB,
rapid communications. Hardcopies of figures or the entire manuscript may also
be obtained by e-mail request to: [email protected]
Neel Order and Electron Spectral Functions in the Two-Dimensional Hubbard Model: a Spin-Charge Rotating Frame Approach
Using recently developed quantum SU(2)xU(1) rotor approach, that provides a
self-consistent treatment of the antiferromagnetic state we have performed
electronic spectral function calculations for the Hubbard model on the square
lattice. The collective variables for charge and spin are isolated in the form
of the space-time fluctuating U(1) phase field and rotating spin quantization
axis governed by the SU(2) symmetry, respectively. As a result interacting
electrons appear as composite objects consisting of bare fermions with attached
U(1) and SU(2) gauge fields. This allows us to write the fermion Green's
function in the space-time domain as the product CP^1 propagator resulting from
the SU(2) gauge fields, U(1) phase propagator and the pseudo-fermion
correlation function. As a result the problem of calculating the spectral line
shapes now becomes one of performing the convolution of spin, charge and
pseudo-fermion Green's functions. The collective spin and charge fluctuations
are governed by the effective actions that are derived from the Hubbard model
for any value of the Coulomb interaction. The emergence of a sharp peak in the
electron spectral function in the antiferromagnetic state indicates the decay
of the electron into separate spin and charge carrying particle excitations.Comment: 16 pages, 5 figures, submitted to Phys. Rev.
Quantum-Dense Metrology
Quantum metrology utilizes entanglement for improving the sensitivity of
measurements. Up to now the focus has been on the measurement of just one out
of two non-commuting observables. Here we demonstrate a laser interferometer
that provides information about two non-commuting observables, with
uncertainties below that of the meter's quantum ground state. Our experiment is
a proof-of-principle of quantum dense metrology, and uses the additional
information to distinguish between the actual phase signal and a parasitic
signal due to scattered and frequency shifted photons. Our approach can be
readily applied to improve squeezed-light enhanced gravitational-wave detectors
at non-quantum noise limited detection frequencies in terms of a sub shot-noise
veto-channel.Comment: 5 pages, 3 figures; includes supplementary material
Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube
We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007–2010. These include parts of the 2005–2007 run and the 2009–2010 run for LIGO-Virgo, and IceCube’s observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10−2 M⊙c2 at ∼150 Hz with ∼60 ms duration, and high-energy neutrino emission of 1051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×10−2 Mpc−3 yr−1. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era. © 2014 The American Physical Societ
Optimized Effective Potential for Extended Hubbard Model
Antiferromagnetic and charge ordered Hartree-Fock solutions of the one-band
Hubbard model with on-site and nearest-neighbor Coulomb repulsions are exactly
mapped onto an auxiliary local Kohn-Sham (KS) problem within a
density-functional theory. The mapping provides a new insight into the
interpretation of the KS equations. (i) With an appropriate choice of the basic
variable, there is a universal form of the KS potential, which is applicable
both for the antiferromagnetic and the charge ordered solutions. (ii) The
Kohn-Sham and Hartree-Fock eigenvalues are interconnected by a scaling
transformation. (iii) The band-gap problem is attributed to the derivative
discontinuity of the basic variable as the function of the electron number,
rather than a finite discontinuity of the KS potential. (iv) It is argued that
the conductivity gap and the energies of spin-wave excitations can be entirely
defined by the parameters of the ground state and the KS eigenvalues.Comment: 21 page, 3 figure
Springback Compensation: Fundamental Topics and Practical Application
Now that the simulation of deep drawing processes has become more reliable the virtual compensation of the forming tools has become reality. In literature, the Displacement Adjustment (DA) algorithm has proved to be most effective. In this article it is shown how the compensation factor, required for (one-step) DA depends on material, process and geometrical parameters. For this an analytical bar stretchbending model was used. A compensation factor is not required when DA is applied iteratively and the products geometrical accuracy is improved further. This was demonstrated on an industrial part. The compensation varies over the product, leading to a reduction in shape deviation of 90% and more, a result that could not have been achieved with one-step compensatio
Repercussion of megakaryocyte-specific Gata1 Loss on megakaryopoiesis and the hematopoietic precursor compartment
During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cK-OMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. © 2016 Meinders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
- …
