6,598 research outputs found

    Investigating the Feasibility of Integrating Pavement Friction and Texture Depth Data in Modeling for INDOT PMS

    Get PDF
    Under INDOT’s current friction testing program, the friction is measured annually on interstates but only once every three years on non-interstate roadways. The state’s Pavement Management System, however, would require current data if friction were to be included in the PMS. During routine pavement condition monitoring for the PMS, texture data is collected annually. This study explored the feasibility of using this pavement texture data to estimate the friction during those years when friction is not measured directly. After multi0ple approaches and a wide variety of ways of examining the currently available data and texture measuring technologies, it was determined that it is not currently feasible to use the texture data as a surrogate for friction testing. This is likely because the lasers used at this time are not capable of capturing the small-scale pavement microtexture. This situation may change, however, with advances in laser or photo interpretation technologies and improved access to materials data throughout the INDOT pavement network

    Manned Mars mission surface transportation elements

    Get PDF
    The necessity and advantage of surface transportation was well demonstrated by the Apollo 15, 16, and 17 missions. Baseline surface transportation elements for further studies are Lunar Rover, Elastic Loop Mobility System, Mobile Laboratory, Airplane, and Rocket Powered Flying Vehicles. These types of surface transportation are discussed. Starting points for further in-depth studies are identified

    Mission and surface infrastructure concepts

    Get PDF
    Several types of manned Mars surface missions, including sorties, fixed-base, and hybrid missions, which can be envisioned as potentially desirable approaches to the exploration and utilization of Mars are identified and discussed. Some of the advantages and disadvantages of each type are discussed briefly. Also, some of the implications of the types of missions on the surface elements' design are discussed briefly. Typical sets of surface elements are identified for each type of mission, and weights are provided for each element and set

    SpxA1 and SpxA2 act coordinately to fine-tune stress responses and virulence in Streptococcus pyogenes

    Get PDF
    SpxA is a unique transcriptional regulator highly conserved among members of the phylum Firmicutes that binds RNA polymerase and can act as an antiactivator. Why some Firmicutes members have two highly similar SpxA paralogs is not understood. Here, we show that the SpxA paralogs of the pathogen Streptococcus pyogenes, SpxA1 and SpxA2, act coordinately to regulate virulence by fine-tuning toxin expression and stress resistance. Construction and analysis of mutants revealed that SpxA1− mutants were defective for growth under aerobic conditions, while SpxA2− mutants had severely attenuated responses to multiple stresses, including thermal and oxidative stresses. SpxA1− mutants had enhanced resistance to the cationic antimicrobial molecule polymyxin B, while SpxA2− mutants were more sensitive. In a murine model of soft tissue infection, a SpxA1− mutant was highly attenuated. In contrast, the highly stress-sensitive SpxA2− mutant was hypervirulent, exhibiting more extensive tissue damage and a greater bacterial burden than the wild-type strain. SpxA1− attenuation was associated with reduced expression of several toxins, including the SpeB cysteine protease. In contrast, SpxA2− hypervirulence correlated with toxin overexpression and could be suppressed to wild-type levels by deletion of speB. These data show that SpxA1 and SpxA2 have opposing roles in virulence and stress resistance, suggesting that they act coordinately to fine-tune toxin expression in response to stress. SpxA2− hypervirulence also shows that stress resistance is not always essential for S. pyogenes pathogenesis in soft tissue

    Application of magnitude estimation scaling to the assessment of subjective loudness response to simulated sonic booms

    Get PDF
    A laboratory study was conducted for the following reasons: (1) to investigate the application of magnitude estimation scaling for evaluating the subjective loudness of sonic booms; and (2) to compare the relative merits of magnitude estimation and numerical category scaling for sonic boom loudness evaluation. The study was conducted in the NASA LeRC's sonic boom simulator and used a total of 80 test subjects (48 for magnitude estimation and 32 for numerical category scaling). Results demonstrated that magnitude estimation was a practical and effective method for quantifying subjective loudness of sonic booms. When using magnitude estimation, the subjects made valid and consistent ratio judgments of sonic boom loudness irrespective of the frequency of presentation of the standard stimulus. Presentation of the standard as every fourth stimulus was preferred by the subjects and is recommended as the standard presentation frequency to be used in future tests

    Utilization survey of prototype structural test article

    Get PDF
    A survey was conducted of six aerospace companies and two NASA agencies to determine how prototype structural test articles are used in flight operations. The prototype structures are airframes and similar devices which are used for testing and generally are not flown. The survey indicated the following: (1) prototype test articles are not being discarded after development testing is complete, but are used for other purposes, (2) only two cases of prototypes being refurbished and flown were identified, (3) protective devices and inspection techniques are available to prevent or minimize test article damage, (4) substitute programs from design verification are availabel in lieu of using prototype structural articles, and (5) there is a trend away from dedicated test articles. Four options based on these study results were identified to reduce test and hardware costs without compromising reliability of the flight program

    Risk Management of Low Air Void Asphalt Concrete Mixtures

    Get PDF
    Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in the mixtures during production and placement. The occurrence of low air void contents during plant production may originate as a result of an accidental increase in binder content or mix fines (or both). When low air voids are encountered during production, the specifying agency must decide whether to require the material that has already been placed to be removed and replaced or whether it can be left in place with a reduction in pay. Consequently, the Indiana Department of Transportation (INDOT) initiated this research project to develop a decision-support tool for dealing with such events that is based on projected rutting performance of the pavement system. The study was conducted along three paths. In the first, INDOT sponsored two pavement test sections at the National Center for Asphalt Technology (NCAT) Test Track. The second path involved testing mixes in the INDOT Accelerated Pavement Testing (APT) Facility. In both cases, mixtures were produced in local hot mix plants by either increasing the fines content or the binder content. The NCAT test sections included low void mixes in the surface course only and performance was measured by the progression of rutting. Significant rutting developed in the low void mixes. The results suggested that removal be considered for mixtures with air voids below 2.75% but that no pay adjustment was necessary for air voids above this level. However, the NCAT results were limited to one pavement structure, one set of materials, one climate and low voids in the surface mix only. In the APT, low air void mixtures were placed in either the surface or the intermediate course and different materials were used. The pavement response (permanent deformation of the top pavement layers) resulting from repetitive APT wheel passes was measured using a laser based system. Lastly, a simplified mechanistic analysis, using a software program called QRSS (Quality Related Specification Software) was used in an attempt to simulate the effects of low void mixtures on pavement performance and service life with different materials in different pavement layers and under different traffic loads. The results of these efforts were used along with engineering judgment to formulate the desired decision-support tool

    Quadrupole collectivity beyond N=28: Intermediate-energy Coulomb excitation of 47,48Ar

    Full text link
    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei \nuc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2)B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpfsdpf shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.Comment: Accepted for publication in Physical Review Letters, typos fixed in resubmission on April 1
    corecore