438 research outputs found

    Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns

    No full text
    The partitioning of the energy in ab initio quantum mechanical calculations into its chemical origins (e.g., electrostatics, exchange-repulsion, polarization, and charge transfer) is a relatively recent development; such concepts of isolating chemically meaningful energy components from the interaction energy have been demonstrated by variational and perturbation based energy decomposition analysis approaches. The variational methods are typically derived from the early energy decomposition analysis of Morokuma [Morokuma, J. Chem. Phys., 1971, 55, 1236], and the perturbation approaches from the popular symmetry-adapted perturbation theory scheme [Jeziorski et al., Methods and Techniques in Computational Chemistry: METECC-94, 1993, ch. 13, p. 79]. Since these early works, many developments have taken place aiming to overcome limitations of the original schemes and provide more chemical significance to the energy components, which are not uniquely defined. In this review, after a brief overview of the origins of these methods we examine the theory behind the currently popular variational and perturbation based methods from the point of view of biochemical applications. We also compare and discuss the chemical relevance of energy components produced by these methods on six test sets that comprise model systems that display interactions typical of biomolecules (such as hydrogen bonding and pi-pi stacking interactions) including various treatments of the dispersion energy

    Pioneering Robotic Liver Surgery in Germany: First Experiences with Liver Malignancies

    Get PDF
    Background Minimally invasive liver surgery is growing worldwide with obvious benefits for the treated patients. These procedures maybe improved by robotic techniques, which add several innovative features. In Germany, we were the first surgical department implementing robotic assisted minimally invasive liver resections. Material and methods Between June 2013 and March 2015, we performed robotic based minimally invasive liver resections in nine patients with malignant liver disease. Five off these patients suffered from primary and four from secondary liver malignancies. We retrospectively analyzed the perioperative variables of these patients and the oncological follow up. Results Mean age of the patients was 63 years (range 45–71). One patient suffered from intrahepatic cholangiocellular, four from hepatocellular carcinoma, and four patients from colorectal liver metastases. In six patients, left lateral liver resection, in two cases single segment resection, and in one case minimally invasive guided liver ablation were performed. Five patients underwent previous abdominal surgery. Mean operation time was 312 min (range 115–458 min). Mean weight of the liver specimens was 182 g (range 62–260 g) and mean estimated blood loss was 251 ml (range 10–650 ml). The mean tumor size was 4.4 cm (range 3.5–5.5 cm). In all cases, R0 status was confirmed with a mean margin of 0.6 cm (range 0.1–1.5 cm). One patient developed small bowel fistula on postoperative day 5, which could be treated conservatively. No patient died. Mean hospital stay of the patients was 6 days (range 3–10 days). During a mean follow up of 12 months (range 1–21 months), two patients developed tumor recurrence. Conclusion Robotic-based liver surgery is feasible in patients with primary and secondary liver malignancies. To achieve perioperative parameters comparable to open settings, the learning curve must be passed. Minor liver resections are good candidates to start this technique. But the huge benefits of robotic-based liver resections should be expected in extended procedures beyond minor liver resections with the currently available technology

    Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution

    Get PDF
    We know that planetary systems are just as common around white dwarfs as around main-sequence stars. However, self-consistently linking a planetary system across these two phases of stellar evolution through the violent giant branch poses computational challenges, and previous studies restricted architectures to equal-mass planets. Here, we remove this constraint and perform over 450 numerical integrations over a Hubble time (14 Gyr) of packed planetary systems with unequal-mass planets. We characterize the resulting trends as a function of planet order and mass. We find that intrusive radial incursions in the vicinity of the white dwarf become less likely as the dispersion amongst planet masses increases. The orbital meandering which may sustain a sufficiently dynamic environment around a white dwarf to explain observations is more dependent on the presence of terrestrial-mass planets than any variation in planetary mass. Triggering unpacking or instability during the white dwarf phase is comparably easy for systems of unequal-mass planets and systems of equal-mass planets; instabilities during the giant branch phase remain rare and require fine-tuning of initial conditions. We list the key dynamical features of each simulation individually as a potential guide for upcoming discoveries

    Obturator Neurectomy for the Treatment of Adductor Spasticity: A Novel Technique and Case Series

    Get PDF
    Background The management of adductor spasticity and long-term sequelae for cerebral palsy (CP) patients is complex. Hip displacement is a common consequence of CP, and obturator neurectomy (ON) is a potentially underutilized procedure to address the underlying adductor spasticity. The aim of this study is to describe the operational technique of ON and highlight the potential efficacy of ON in reducing spasticity, as well as pain, hip, and functional outcomes in these patients. Methods A total of eight patients from Texas Children\u27s Hospital who underwent ON between 2008 and 2023 were included in this case series. Results ON led to a qualitative decrease in adductor spasticity and had high patient-reported satisfaction. The average length of stay was 1.6 days (range: 1-4 days). Hip outcomes improved in all patients, evidenced by increased hip range of motion, improved mobility/gait, and decreased migration index (MI) in one patient. Conclusions ON is an efficient procedure that has the potential to reduce adductor tone and improve hip outcomes. The operative technique described and the reported patient satisfaction support the integration of ON into the paradigm of adductor spasticity management. Further prospective studies, however, are needed to objectively measure tone and hip outcomes in these patients

    The thrombopoietin receptor : revisiting the master regulator of platelet production

    Get PDF
    Thrombopoietin (TPO) and its receptor, MPL, are the primary regulators of platelet production and critical for hematopoietic stem cell (HSC) maintenance. Since TPO was first cloned in 1994, the physiological and pathological roles of TPO and MPL have been well characterized, culminating in the first MPL agonists being approved for the treatment of chronic immune thrombocytopenia in 2008. Dysregulation of the TPO-MPL signaling axis contributes to the pathogenesis of hematological disorders: decreased expression or function results in severe thrombocytopenia progressing to bone marrow failure, while hyperactivation of MPL signaling, either by mutations in the receptor or associated Janus kinase 2 (JAK2), results in pathological myeloproliferation. Despite its importance, it was only recently that the long-running debate over the mechanism by which TPO binding activates MPL has been resolved. This review will cover key aspects of TPO and MPL structure and function and their importance in receptor activation, discuss how these are altered in hematological disorders and consider how a greater understanding could lead to the development of better-targeted and more efficacious therapies

    First Retrievals of Surface and Atmospheric Properties Using EnMAP Measurements over Antarctica

    Get PDF
    The paper presents the first retrievals of clean snow properties using spaceborne hyperspectral observations via the Environmental Mapping and Analysis Program (EnMAP). The location close to the Concordia station at the Dome C Plateau (Antarctica) was selected. At this location, the atmospheric effects (except molecular light scattering and absorption) are weak, and the simplified atmospheric correction scheme could be applied. The ice grain size, snow specific surface area, and snow spectral and broadband albedos were retrieved using single-view EnMAP measurements. In addition, we propose a technique to retrieve trace gas concentrations (e.g., water vapor and ozone) from EnMAP observations over the snow surfaces. A close correspondence of satellite and ground-measured parameters was found

    Pioneering Robotic Liver Surgery in Germany: First Experiences with Liver Malignancies

    Get PDF
    Background Minimally invasive liver surgery is growing worldwide with obvious benefits for the treated patients. These procedures maybe improved by robotic techniques, which add several innovative features. In Germany, we were the first surgical department implementing robotic assisted minimally invasive liver resections. Material and methods Between June 2013 and March 2015, we performed robotic based minimally invasive liver resections in nine patients with malignant liver disease. Five off these patients suffered from primary and four from secondary liver malignancies. We retrospectively analyzed the perioperative variables of these patients and the oncological follow up. Results Mean age of the patients was 63 years (range 45–71). One patient suffered from intrahepatic cholangiocellular, four from hepatocellular carcinoma, and four patients from colorectal liver metastases. In six patients, left lateral liver resection, in two cases single segment resection, and in one case minimally invasive guided liver ablation were performed. Five patients underwent previous abdominal surgery. Mean operation time was 312 min (range 115–458 min). Mean weight of the liver specimens was 182 g (range 62–260 g) and mean estimated blood loss was 251 ml (range 10–650 ml). The mean tumor size was 4.4 cm (range 3.5–5.5 cm). In all cases, R0 status was confirmed with a mean margin of 0.6 cm (range 0.1–1.5 cm). One patient developed small bowel fistula on postoperative day 5, which could be treated conservatively. No patient died. Mean hospital stay of the patients was 6 days (range 3–10 days). During a mean follow up of 12 months (range 1–21 months), two patients developed tumor recurrence. Conclusion Robotic-based liver surgery is feasible in patients with primary and secondary liver malignancies. To achieve perioperative parameters comparable to open settings, the learning curve must be passed. Minor liver resections are good candidates to start this technique. But the huge benefits of robotic-based liver resections should be expected in extended procedures beyond minor liver resections with the currently available technology
    corecore