124 research outputs found

    Continental flood basalts derived from the hydrous mantle transition zone

    Get PDF
    It has previously been postulated that the Earth's hydrous mantle transition zone may play a key role in intraplate magmatism, but no confirmatory evidence has been reported. Here we demonstrate that hydrothermally altered subducted oceanic crust was involved in generating the late Cenozoic Chifeng continental flood basalts of East Asia. This study combines oxygen isotopes with conventional geochemistry to provide evidence for an origin in the hydrous mantle transition zone. These observations lead us to propose an alternative thermochemical model, whereby slab-triggered wet upwelling produces large volumes of melt that may rise from the hydrous mantle transition zone. This model explains the lack of pre-magmatic lithospheric extension or a hotspot track and also the arc-like signatures observed in some large-scale intracontinental magmas. Deep-Earth water cycling, linked to cold subduction, slab stagnation, wet mantle upwelling and assembly/breakup of supercontinents, can potentially account for the chemical diversity of many continental flood basalts

    Cytomegalovirus Replicon-Based Regulation of Gene Expression In Vitro and In Vivo

    Get PDF
    There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV) origin of lytic replication (oriLyt), were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed

    The Mantle Transition Zone Beneath West Antarctica: Seismic Evidence for Hydration and Thermal Upwellings

    Get PDF
    Although prior work suggests that a mantle plume is associated with Cenozoic rifting and volcanism in West Antarctica, the existence of a plume remains conjectural. Here we use P wave receiver functions (PRFs) from the Antarctic POLENET array to estimate mantle transition zone thickness, which is sensitive to temperature perturbations, throughout previously unstudied parts of West Antarctica. We obtain over 8000 high-quality PRFs using an iterative, time domain deconvolution method filtered with a Gaussian width of 0.5 and 1.0, corresponding to frequencies less than ∼0.24 and ∼0.48 Hz, respectively. Single-station and common conversion point stacks, migrated to depth using the AK135 velocity model, indicate that mantle transition zone thickness throughout most of West Antarctica does not differ significantly from the global average, except in two locations; one small region exhibits a vertically thinned (210 ± 15 km) transition zone beneath the Ruppert Coast of Marie Byrd Land and another laterally broader region shows slight, vertical thinning (225 ± 25 km) beneath the Bentley Subglacial Trench. We also observe the 520 discontinuity and a prominent negative peak above the mantle transition zone throughout much of West Antarctica. These results suggest that the mantle transition zone may be hotter than average in two places, possibly due to upwelling from the lower mantle, but not broadly across West Antarctica. Furthermore, we propose that the transition zone may be hydrated due to \u3e100 million years of subduction beneath the region during the early Mesozoic

    Significance of mantle/melt interaction beneath the mid-ocean ridge

    No full text
    corecore