23 research outputs found

    Rotating biological contactors : a review on main factors affecting performance

    Get PDF
    Rotating biological contactors (RBCs) constitute a very unique and superior alternative for biodegradable matter and nitrogen removal on account of their feasibility, simplicity of design and operation, short start-up, low land area requirement, low energy consumption, low operating and maintenance cost and treatment efficiency. The present review of RBCs focus on parameters that affect performance like rotational speed, organic and hydraulic loading rates, retention time, biofilm support media, staging, temperature, influent wastewater characteristics, biofilm characteristics, dissolved oxygen levels, effluent and solids recirculation, stepfeeding and medium submergence. Some RBCs scale-up and design considerations, operational problems and comparison with other wastewater treatment systems are also reported.Fundação para a Ciência e a Tecnologia (FCT

    PERFORMANCE OF YIELD AND YIELD CONTRIBUTING CHARACTERISTICS OF BC2F3 POPULATION WITH ADDITION OF BLAST RESISTANT GENE

    Get PDF
    ABSTRACTThe study was carried out in the University Putra Malaysia (UPM) Rice Research Centre to evaluate the yield performance of newly developed selected blast resistant plants of BC2F3 generations derived from a cross between MR263, a high yielding rice variety but blast susceptible and Pongsu Seribu 1, donor with blast resistant (Pi-7(t)and Pi-d (t)1, Pir2-3(t)genes and qLN2 QTL), Malaysian local variety. On the basis of assessed traits, the plants 12, 6, 7, 5, 21, 22, 5, 26, 11, 8, 10, 13 and 15 had the higher yield, blast resistant and good morphological traits. More than 70% heritability was found in days to maturity, plant height, tiller numbers per hill, and panicle per hill, 80% heritability was found in filled grain and yield per hill and more than 90% heritability was found in grain length, grain width and seed weight. Cluster analysis based on the traits grouped 30 plants along with MR263 into seven clusters. According to PCA, the first four principal components account for about 69.3% total variation for all measured traits and exhibited high correlation among the characteristics analyzed

    Agricultural finance: Past performance and future reforms

    No full text

    Improving dissolution profile of poorly water-soluble drug using non-ordered mesoporous silica

    Full text link
    © 2018 Marmara University Press. The aim of the study was to increase dissolution rate of atorvastatin by the use of mesoporous silica SYLOID® 244 FP. The poorly soluble drug atorvastatin was adsorbed on and/or into SYLOID® 244 FP in the ratios 1:1, 1:1.1.5, 1:2, 1:2.5, 1:3 and 1:3.5 via a wetness impregnation method. The absence of crystalline form and presence of hydrogen bond interaction between atorvastatin and SYLOID® 244 FP is done by Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The atorvastatin loaded matrix lacked in the crystalline form of atorvastatin and it showed improvement in the dissolution rate of ATC. The flowability of the atorvastatin loaded matrix powder was evaluated by bulk density, Carr’s index and angle of repose. This matrix was then processed into a tablet by direct compression method. A 32 full factorial design was applied to investigate the combined effect of two formulation variables - volume of ethanol and amount of SYLOID® 244 FP. The tablets were evaluated for hardness, friability, drug content and drug dissolution studies. The solubility of atorvastatin-loaded matrix was increased up to 4.28 times. Atorvastatin tablet prepared from drug-loaded silica may provide a feasible approach for development of an oral formulation for this poorly water-soluble drug

    Performance characteristics and operational feasibility assessment of a CRISPR based tata MD CHECK diagnostic test for SARS-CoV-2 (COVID-19).

    No full text
    BackgroundTata MD CHECK SARS-CoV-2 kit 1.0, a CRISPR based reverse transcription PCR (TMC-CRISPR) test was approved by Indian Council of Medical Research (ICMR) for COVID-19 diagnosis in India. To determine the potential for rapid roll-out of this test, we conducted performance characteristic and an operational feasibility assessment (OFA) at a tertiary care setting.InterventionThe study was conducted at an ICMR approved COVID-19 RT-PCR laboratory of King Edward Memorial (KEM) hospital, Mumbai, India. The TMC-CRISPR test was evaluated against the gold-standard RT-PCR test using the same RNA sample extracted from fresh and frozen clinical specimens collected from COVID-19 suspects for routine diagnosis. TMC-CRISPR results were determined manually and using the Tata MD CHECK application. An independent agency conducted interviews of relevant laboratory staff and supervisors for OFA.ResultsOverall, 2,332 (fresh: 2,121, frozen: 211) clinical specimens were analysed of which, 140 (6%) were detected positive for COVID-19 by TMC-CRISPR compared to 261 (11%) by RT-PCR. Overall sensitivity and specificity of CRISPR was 44% (95% CI: 38.1%-50.1%) and 99% (95% CI: 98.2%-99.1%) respectively when compared to RT-PCR. Discordance between TMC-CRISPR and RT-PCR results increased with increasing Ct values and corresponding decreasing viral load (range: 85%). In the OFA, all participants indicated no additional requirements of training to set up RT PCR. However, extra post-PCR steps such as setting up the CRISPR reaction and handling of detection strips were time consuming and required special training. No significant difference was observed between manual and mobile app-based readings. However, issues such as erroneous results, difficulty in interpretation of faint bands, internet connectivity, data safety and security were highlighted as challenges with the app-based readings.ConclusionThe evaluated version-Tata MD CHECK SARS-CoV-2 kit 1.0 of TMC-CRISPR test cannot be considered as an alternative to the RT-PCR. There is a definite scope for improvement in this assay

    1,5-Benzothiazepine Derivatives: Green Synthesis, In Silico and In Vitro Evaluation as Anticancer Agents

    No full text
    Considering the importance of benzothiazepine pharmacophore, an attempt was carried out to synthesize novel 1,5-benzothiazepine derivatives using polyethylene glycol-400 (PEG-400)-mediated pathways. Initially, different chalcones were synthesized and then subjected to a cyclization step with benzothiazepine in the presence of bleaching clay and PEG-400. PEG-400-mediated synthesis resulted in a yield of more than 95% in less than an hour of reaction time. Synthesized compounds 2a–2j were investigated for their in vitro cytotoxic activity. Moreover, the same compounds were subjected to systematic in silico screening for the identification of target proteins such as human adenosine kinase, glycogen synthase kinase-3β, and human mitogen-activated protein kinase 1. The compounds showed promising results in cytotoxicity assays; among the tested compounds, 2c showed the most potent cytotoxic activity in the liver cancer cell line Hep G-2, with an IC50 of 3.29 ± 0.15 µM, whereas the standard drug IC50 was 4.68 ± 0.17 µM. In the prostate cancer cell line DU-145, the compounds displayed IC50 ranges of 15.42 ± 0.16 to 41.34 ± 0.12 µM, while the standard drug had an IC50 of 21.96 ± 0.15 µM. In terms of structural insights, the halogenated phenyl substitution on the second position of benzothiazepine was found to significantly improve the biological activity. This characteristic feature is supported by the binding patterns on the selected target proteins in docking simulations. In this study, 1,5-benzothiazepines have been identified as potential anticancer agents which can be further exploited for the development of more potent derivatives
    corecore