92 research outputs found

    Rethinking neoadjuvant chemotherapy for breast cancer

    Get PDF
    Breast cancer is the most common cancer in women worldwide. In 2014, 55 000 women in the UK were given the diagnosis of breast cancer, and 11 000 died.1 Early breast cancer is traditionally treated with surgery, plus radiotherapy and adjuvant systemic therapy as required. Neoadjuvant chemotherapy for breast cancer is a new strategy that was introduced towards the end of the 20th century with the aim of reducing tumour size. It has four main rationales. Firstly, it should render an otherwise inoperable tumour operable or, secondly, allow more conservative surgery. Thirdly, starting systemic treatment preoperatively was hoped to lead to improved overall survival in patients with locally advanced cancers, who are at high risk of having distant disease. Finally, unlike adjuvant chemotherapy given in the absence of any measurable disease, neoadjuvant chemotherapy gives us the opportunity to observe the tumour shrink both palpably and on imaging, enabling a rapid assessment of clinical response. This could help test responses in vivo to new drug regimens, which could then be used as adjuvant therapies, in so called window of opportunity studies. A survey of multidisciplinary teams in Australia, Germany, Italy, the UK, and the US found that 7-27% of new breast cancers are treated with neoadjuvant chemotherapy (Saunders C, Cody H, Kolberg HC, et al, personal communication, 2017). With 1.7 million women receiving diagnoses annually, this translates into 120 000-460 000 women receiving neoadjuvant chemotherapy worldwide.1 Although data indicate that the first rationale remains valid, the others have not led to the desired outcomes. More conservative surgery after neoadjuvant chemotherapy can result in a higher rate of local recurrence, and, despite the earlier initiation of systemic treatment, no improvement in survival has been seen.234 Furthermore, neoadjuvant chemotherapy may not help test novel chemotherapies—although primary tumour response is a good indicator of prognosis for a particular treatment, it is counterintuitively a poor surrogate marker for the overall survival benefit when evaluating novel chemotherapy regimens. Finally, for 40-80% of patients, even the best neoadjuvant chemotherapy regimens extend the period the cancer remains in the breast and can make surgery more difficult, as the tumour is less easily palpable and the axillary lymph nodes are less distinct. We question the wisdom of the current widespread use of neoadjuvant chemotherapy

    Whole genome methylation profiles as independent markers of survival in stage IIIc melanoma patients

    Get PDF
    Background: The clinical course of cutaneous melanoma (CM) can differ significantly for patients with identical stages of disease, defined clinico-pathologically, and no molecular markers differentiate patients with such a diverse prognosis. This study aimed to define the prognostic value of whole genome DNA methylation profiles in stage III CM.Methods: Genome-wide methylation profiles were evaluated by the Illumina Human Methylation 27 BeadChip assay in short-term neoplastic cell cultures from 45 stage IIIC CM patients. Unsupervised K-means partitioning clustering was exploited to sort patients into 2 groups based on their methylation profiles. Methylation patterns related to the discovered groups were determined using the nearest shrunken centroid classification algorithm. The impact of genome-wide methylation patterns on overall survival (OS) was assessed using Cox regression and Kaplan-Meier analyses.Results: Unsupervised K-means partitioning by whole genome methylation profiles identified classes with significantly different OS in stage IIIC CM patients. Patients with a " favorable" methylation profile had increased OS (P = 0.001, log-rank = 10.2) by Kaplan-Meier analysis. Median OS of stage IIIC patients with a " favorable" vs. " unfavorable" methylation profile were 31.5 and 10.4 months, respectively. The 5 year OS for stage IIIC patients with a " favorable" methylation profile was 41.2% as compared to 0% for patients with an " unfavorable" methylation profile. Among the variables examined by multivariate Cox regression analysis, classification defined by methylation profile was the only predictor of OS (Hazard Ratio = 2.41, for " unfavorable" methylation profile; 95% Confidence Interval: 1.02-5.70; P = 0.045). A 17 gene methylation signature able to correctly assign prognosis (overall error rate = 0) in stage IIIC patients on the basis of distinct methylation-defined groups was also identified.Conclusions: A discrete whole-genome methylation signature has been identified as molecular marker of prognosis for stage IIIC CM patients. Its use in daily practice is foreseeable, and promises to refine the comprehensive clinical management of stage III CM patients. © 2012 Sigalotti et al.; licensee BioMed Central Ltd

    Intraoperative radiotherapy for breast cancer: powerful evidence to change practice

    Get PDF
    We believe that the recent News and Views article (Sasieni, P. D. & Sawyer, E. J. Intraoperative radiotherapy for early breast cancer — insufficient evidence to change practice. Nat. Rev. Clin. Oncol. 17, 723–724 (2020))1 about the TARGIT-A trial contains several factual and logical errors. This article overlooks both the long-term positive findings2 and the all-important patient perspective

    Loss of the extracellular matrix glycoprotein EMILIN1 accelerates Δ16HER2-driven breast cancer initiation in mice

    Get PDF
    The extracellular matrix (ECM) is an important component of the tumor microenvironment and undergoes extensive remodeling during both initiation and progression of breast cancer (BC). EMILIN1 is an ECM glycoprotein, whose function has been linked to cancer and metastasis. However, EMILIN1 role during mammary gland and BC development has never been investigated. In silico and molecular analyses of human samples from normal mammary gland and BC showed that EMILIN1 expression was lower in tumors than in healthy mammary tissue and it predicted poor prognosis, particularly in HER2-positive BC. HER2+ BC accounts for 15-20% of all invasive BC and is characterized by high aggressiveness and poor prognosis. The Δ16HER2 isoform, a splice variant with very high oncogenic potential, is frequently expressed in HER2+ BC and correlates with metastatic disease. To elucidate the role of EMILIN1 in BC, we analyzed the phenotype of MMTV-Δ16HER2 transgenic mice, developing spontaneous multifocal mammary adenocarcinomas, crossed with EMILIN1 knock-out (KO) animals. We observed that Δ16HER2/EMILIN1 KO female mice exhibited an accelerated normal mammary gland development and a significantly anticipated appearance of palpable tumors (13.32 vs 15.28 weeks). This accelerated tumor initiation was corroborated by an increased number of tumor foci observed in mammary glands from Δ16HER2/EMILIN1 KO mice compared to the wild-type counterpart. Altogether our results underscore the centrality of ECM in the process of BC initiation and point to a role for EMILIN1 during normal mammary gland development and in protecting from HER2-driven breast tumorigenesis
    • …
    corecore