3,996 research outputs found
Propagation of fluctuations in interaction networks governed by the law of mass action
Using an example of physical interactions between proteins, we study how
perturbations propagate in interconnected networks whose equilibrium state is
governed by the law of mass action. We introduce a comprehensive matrix
formalism which predicts the response of this equilibrium to small changes in
total concentrations of individual molecules, and explain it using a heuristic
analogy to a current flow in a network of resistors. Our main conclusion is
that on average changes in free concentrations exponentially decay with the
distance from the source of perturbation. We then study how this decay is
influenced by such factors as the topology of a network, binding strength, and
correlations between concentrations of neighboring nodes. An exact analytic
expression for the decay constant is obtained for the case of uniform
interactions on the Bethe lattice. Our general findings are illustrated using a
real biological network of protein-protein interactions in baker's yeast with
experimentally determined protein concentrations.Comment: 4 pages; 2 figure
On the superfluidity of classical liquid in nanotubes
In 2001, the author proposed the ultra second quantization method. The ultra
second quantization of the Schr\"odinger equation, as well as its ordinary
second quantization, is a representation of the N-particle Schr\"odinger
equation, and this means that basically the ultra second quantization of the
equation is the same as the original N-particle equation: they coincide in
3N-dimensional space.
We consider a short action pairwise potential V(x_i -x_j). This means that as
the number of particles tends to infinity, , interaction is
possible for only a finite number of particles. Therefore, the potential
depends on N in the following way: . If V(y) is finite
with support , then as the support engulfs a finite
number of particles, and this number does not depend on N.
As a result, it turns out that the superfluidity occurs for velocities less
than , where
is the critical Landau velocity and R is the radius of
the nanotube.Comment: Latex, 20p. The text is presented for the International Workshop
"Idempotent and tropical mathematics and problems of mathematical physics",
Independent University of Moscow, Moscow, August 25--30, 2007 and to be
published in the Russian Journal of Mathematical Physics, 2007, vol. 15, #
Expansion Around the Mean-Field Solution of the Bak-Sneppen Model
We study a recently proposed equation for the avalanche distribution in the
Bak-Sneppen model. We demonstrate that this equation indirectly relates
,the exponent for the power law distribution of avalanche sizes, to ,
the fractal dimension of an avalanche cluster.We compute this relation
numerically and approximate it analytically up to the second order of expansion
around the mean field exponents. Our results are consistent with Monte Carlo
simulations of Bak-Sneppen model in one and two dimensions.Comment: 5 pages, 2 ps-figures iclude
Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts
We show that G\"odel's negative results concerning arithmetic, which date
back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites
paradox") pose the questions of the use of fuzzy sets and of the effect of a
measuring device on the experiment. The consideration of these facts led, in
thermodynamics, to a new one-parameter family of ideal gases. In turn, this
leads to a new approach to probability theory (including the new notion of
independent events). As applied to economics, this gives the correction, based
on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us
to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are
added. arXiv admin note: significant text overlap with arXiv:1111.610
Hierarchy Measures in Complex Networks
Using each node's degree as a proxy for its importance, the topological
hierarchy of a complex network is introduced and quantified. We propose a
simple dynamical process used to construct networks which are either maximally
or minimally hierarchical. Comparison with these extremal cases as well as with
random scale-free networks allows us to better understand hierarchical versus
modular features in several real-life complex networks. For random scale-free
topologies the extent of topological hierarchy is shown to smoothly decline
with -- the exponent of a degree distribution -- reaching its highest
possible value for and quickly approaching zero for .Comment: 4 pages, 4 figure
Promise and Pitfalls of Extending Google's PageRank Algorithm to Citation Networks
We review our recent work on applying the Google PageRank algorithm to find
scientific "gems" among all Physical Review publications, and its extension to
CiteRank, to find currently popular research directions. These metrics provide
a meaningful extension to traditionally-used importance measures, such as the
number of citations and journal impact factor. We also point out some pitfalls
of over-relying on quantitative metrics to evaluate scientific quality.Comment: 3 pages, 1 figure, invited comment for the Journal of Neuroscience.
The arxiv version is microscopically different from the published versio
Leishmania tarentolae: taxonomic classification and its application as a promising biotechnological expression host
In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether the current biosafety level of this strain should be reevaluated. In addition, we will summarize the current state of biotechnological research involving L. tarentolae and explain why this eukaryotic parasite is an advantageous and promising human recombinant protein expression host. This summary includes overall biotechnological applications, insights into its protein expression machinery (especially on glycoprotein and antibody fragment expression), available expression vectors, cell culture conditions, and its potential as an immunotherapy agent for human leishmaniasis treatment. Furthermore, we will highlight useful online tools and, finally, discuss possible future applications such as the humanization of the glycosylation profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigotelike cells of this species or in amastigotes of avirulent human-pathogenic Leishmania species
- …
