1,212 research outputs found

    The flavour projection of staggered fermions and the quarter-root trick

    Full text link
    It is shown that the flavour projection of staggered fermions can be written as a projection between the fields on four separate, but parallel, lattices, where the fields on each are modified forms of the standard staggered fermion field. Because the staggered Dirac operator acts equally on each lattice, it respects this flavour projection. We show that the system can be gauged in the usual fashion and that this does not interfere with flavour projection. We also consider the path integral, showing that, prior to flavour projection, it evaluates to the same form on each lattice and that this form is equal to that used in the quarter-root trick. The flavour projection leaves a path integral for a single flavour of field on each lattice.Comment: 8 pages, including title pag

    Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts.

    Get PDF
    During cell division, condensation and resolution of chromosome arms and the assembly of a functional kinetochore at the centromere of each sister chromatid are essential steps for accurate segregation of the genome by the mitotic spindle, yet the contribution of individual chromatin proteins to these processes is poorly understood. We have investigated the role of embryonic linker histone H1 during mitosis in Xenopus laevis egg extracts. Immunodepletion of histone H1 caused the assembly of aberrant elongated chromosomes that extended off the metaphase plate and outside the perimeter of the spindle. Although functional kinetochores assembled, aligned, and exhibited poleward movement, long and tangled chromosome arms could not be segregated in anaphase. Histone H1 depletion did not significantly affect the recruitment of known structural or functional chromosomal components such as condensins or chromokinesins, suggesting that the loss of H1 affects chromosome architecture directly. Thus, our results indicate that linker histone H1 plays an important role in the structure and function of vertebrate chromosomes in mitosis

    Information Diversity in Coherent MIMO Radars

    Get PDF
    In this paper, the concept of information diversity in both the space and frequency domains is investigated for multiple-input multiple-output (MIMO) radars with widely separated antennas. Compared to phased-antenna arrays and multistatic radars, they can exploit more degrees of freedom, allowing them to maximize the information content upon centralized data fusion, thus granting unprecedented target detection and localization capabilities.This analysis proceeds in parallel with the running progresses of microwave photonics (MWP), which could represent, in the near future, a new paradigm for the development of centralized MIMO radar architectures.Thus, understanding the implications of information diversity becomes essential to foretell the system effectiveness in detecting and resolving closely spaced targets, as well as in suppressing sidelobes which may lead to false alarms. Performance metrics are proposed and evaluated to characterize the effects that information diversity has on centralized MIMO radars with widely separated antennas. On the other hand, the proposed methodology could reveal precious for designing the optimum system configuration

    Biological Responses to Cadmium Stress in Liverwort Conocephalum conicum (Marchantiales)

    Get PDF
    Oxidative damage (production and localization of reactive oxygen species) and related response mechanisms (activity of antioxidant enzymes), and induction of Heat Shock Protein 70 expression, have been studied in the toxi-tolerant liverwort Conocephalum conicum (Marchantiales) in response to cadmium stress using two concentrations (36 and 360 µM CdCl2). Cadmium dose-dependent production of reactive oxygen species (ROS) and related activity of antioxidant enzymes was observed. The expression level of heat shock protein (Hsp)70, instead, was higher at 36 µM CdCl2 in comparison with the value obtained after exposure to 360 µM CdCl2, suggesting a possible inhibition of the expression of this stress gene at higher cadmium exposure doses. Biological responses were related to cadmium bioaccumulation. Since C. conicum was able to respond to cadmium stress by modifying biological parameters, we discuss the data considering the possibility of using these biological changes as biomarkers of cadmium pollution

    Resistance to apramycin of Salmonella and E.coli isolated from swine

    Get PDF
    The aim of this study was to determine the prevalence of aminoglycosides antibiotic resistance in Salmonella spp. and E. coli strains. 32 E. coli, and 47 Salmonella spp., isolated from cases of enteritis in growers and fatteners from 1998 to 2002 in Umbria and Marche regions, were tested. Susceptibility to gentamicin, tobramycin and streptomycin was determined by Kirby-Bauer method, apramycin by microdilution method. 92,4 % of the strains tested were susceptible to apramycin, 77,2 % to gentamicin, 67,1 % to tobramycin and 35,4 % to streptomycin. A positive statistical association between gentamicin and apramycin (RR = 7,63; p = 0,014), tobramycin and apramycin (RR = 9,22; p = 0,027) was demonstrated. There is no difference between the association apramycin-streptomycin, suggesting a mechanism of resistance related to the presence of the aminoglycoside acetyltranspherase IV enzyme. The trend based on estimated OR from the resistance of the strains for every year considered was significant (p = 0,00049), showing a progressive decrease from 1998 (OR = 1) to 2002 (OR = 0,3)

    Distributed coherent radars enabled by fiber networks

    Get PDF
    In the last few years, we have been proposing the use of photonics to bring new functionalities in radar systems, exploiting its precision and tunability to give radars improved performance and reconfigurability. This paper will present the most recent evolution of the original idea of photonics-based radars, which considers the exploitation of the increasingly available fiber connections to implement a network of widely distributed radars. The centralized photonic approach allows driving several separated radars simultaneously, enabling the novel class of distributed coherent radar systems. Through the implementation of specific multi-input multi-output (MIMO) processing, the photonics-enabled radar network is capable to push the radar detection resolution far beyond the limits usually set by the signal bandwidth alone

    Widely distributed photonics-based dual-band MIMO radar for harbour surveillance

    Get PDF
    A new architecture for a widely distributed dual-band coherent multiple-input multiple-output (MIMO) radar system is illustrated, and its implementation and testing are reported. The system consists in a central unit where radar signals are coherently generated and detected, which serves multiple remote sensors connected over transparent WDM optical network. Every remote node operates coherently both in the S- and X-band, and is displaced over distances of several kilometers, allowing to monitor a scene under different angles of view. All the remote sensors share the same oscillator and digital signal processing unit, both located in the central office, allowing to perform centralized raw data fusion on the acquired signals. By virtue of the system coherence, the system takes advantage of the coherent MIMO processing strategy to offer a superior spatial resolution, which is even magnified by the dual-band approach
    • …
    corecore