298 research outputs found

    Analyse der Wirtschaftlichkeit von Kernfusionskraftwerken

    No full text
    Diese Arbeit untersucht die Wirtschaftlichkeit der Kernfusion in der zweiten Hälfte des 21. Jahrhunderts aus betriebswirtschaftlicher Perspektive. Die Kernfusion verspricht eine sichere, umweltfreundliche, nachhaltige CO2-freie Stromversorgung. In dieser Arbeit werden die Stromgestehungskosten von TOKAMAK-Fusionskraftwerken mit anderen Grundlasttechnologien verglichen. In einer Szenarioanalyse werden unterschiedliche Entwicklungen der technischen Performance von Fusionskraftwerken, der Höhe des Zinsniveaus, der Preise für Primärenergieträger, bei CO2-Emissionsrestriktionen sowie der gesellschaftlichen Akzeptanz von Spaltungskraftwerken betrachtet. Es wird gezeigt, dass Fusionskraftwerke aus Sicht eines gewinnorientierten Investors wirtschaftlich sein werden, wenn deren wissenschaftlich-technische Entwicklung überdurchschnittlich erfolgreich verläuft, die Preise für Primärenergieträger und CO2-Emissionszertifikate deutlich über dem heutigen Niveau liegen und es zu einem gesellschaftlichen Ausstieg aus der Kernspaltung kommt. Zusätzlich muss ein niedriges bis höchstens mittleres Zinsniveau bestehen. Daher ist es gut möglich, dass sich je nach Bedingungen auf den Kapitalmärkten in der zweiten Hälfte des 21. Jahrhunderts der Bau der ersten kommerziellen Fusionskraftwerke aufgrund zu hoher Zinsen einige Zeit verschiebt. In einer Wild-Cards-Analyse zeigt sich, dass es für die Wirtschaftlichkeit der Kernfusion von Vorteil ist sich von der Kernspaltung abzugrenzen. Insgesamt betrachtet scheint es wahrscheinlich, dass Kernfusionskraftwerke bei Erfüllung obig genannter ökonomischer und technologischer Rahmenbedingungen sowie bei gesellschaftlichem Willen innerhalb des 21. Jahrhunderts wirtschaftlich gebaut und betrieben werden können

    Texturing of Soy Yoghurt Alternatives: Pectin Microgel Particles Serve as Inactive Fillers and Weaken the Soy Protein Gel Structure

    Get PDF
    Soy-based yoghurt alternatives were highly requested by consumers over the last few years. However, their texture does not always fulfil consumers’ demands as such yoghurt alternatives are often perceived as too firm or too soft, sandy, or fibrous. In order to improve the texture, fibres, for example, in the form of microgel particles (MGP), can be added to the soy matrix. MGP are expected to interact with soy proteins, creating different microstructures and, thus, different gel properties after fermentation. In this study, pectin-based MGP were added in different sizes and concentrations, and the soy gel properties after fermentation were characterised. It was found that the addition of 1 wt.% MGP influenced neither the flow behaviour nor the tribological/lubrication properties of the soy matrix, regardless of the MGP size. However, at higher MGP concentrations (3 and 5 wt.%), the viscosity and yield stress were reduced, the gel strength and cross-linking density decreased, and the water-holding capacity was reduced. At 5 wt.%, strong and visible phase separation occurred. Thus, it can be concluded that apple pectin-based MGP serve as inactive fillers in fermented soy protein matrices. They can, therefore, be used to weaken the gel matrix purposely to create novel microstructures

    A new regime of anomalous penetration of relativistically strong laser radiation into an overdense plasma

    Get PDF
    It is shown that penetration of relativistically intense laser light into an overdense plasma, accessible by self-induced transparency, occurs over a finite length only. The penetration length depends crucially on the overdense plasma parameter and increases with increasing incident intensity after exceeding the threshold for self-induced transparency. Exact analytical solutions describing the plasma-field distributions are presented.Comment: 6 pages, 2 figures in 2 separate eps files; submitted to JETP Letter

    High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension

    Full text link
    The nonlinear Helmholtz equation (NLH) models the propagation of electromagnetic waves in Kerr media, and describes a range of important phenomena in nonlinear optics and in other areas. In our previous work, we developed a fourth order method for its numerical solution that involved an iterative solver based on freezing the nonlinearity. The method enabled a direct simulation of nonlinear self-focusing in the nonparaxial regime, and a quantitative prediction of backscattering. However, our simulations showed that there is a threshold value for the magnitude of the nonlinearity, above which the iterations diverge. In this study, we numerically solve the one-dimensional NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity contains absolute values of the field, the NLH has to be recast as a system of two real equations in order to apply Newton's method. Our numerical simulations show that Newton's method converges rapidly and, in contradistinction with the iterations based on freezing the nonlinearity, enables computations for very high levels of nonlinearity. In addition, we introduce a novel compact finite-volume fourth order discretization for the NLH with material discontinuities.The one-dimensional results of the current paper create a foundation for the analysis of multi-dimensional problems in the future.Comment: 47 pages, 8 figure

    A High-Order Numerical Method for the Nonlinear Helmholtz Equation in Multidimensional Layered Media

    Full text link
    We present a novel computational methodology for solving the scalar nonlinear Helmholtz equation (NLH) that governs the propagation of laser light in Kerr dielectrics. The methodology addresses two well-known challenges in nonlinear optics: Singular behavior of solutions when the scattering in the medium is assumed predominantly forward (paraxial regime), and the presence of discontinuities in the % linear and nonlinear optical properties of the medium. Specifically, we consider a slab of nonlinear material which may be grated in the direction of propagation and which is immersed in a linear medium as a whole. The key components of the methodology are a semi-compact high-order finite-difference scheme that maintains accuracy across the discontinuities and enables sub-wavelength resolution on large domains at a tolerable cost, a nonlocal two-way artificial boundary condition (ABC) that simultaneously facilitates the reflectionless propagation of the outgoing waves and forward propagation of the given incoming waves, and a nonlinear solver based on Newton's method. The proposed methodology combines and substantially extends the capabilities of our previous techniques built for 1Dand for multi-D. It facilitates a direct numerical study of nonparaxial propagation and goes well beyond the approaches in the literature based on the "augmented" paraxial models. In particular, it provides the first ever evidence that the singularity of the solution indeed disappears in the scalar NLH model that includes the nonparaxial effects. It also enables simulation of the wavelength-width spatial solitons, as well as of the counter-propagating solitons.Comment: 40 pages, 10 figure

    Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions

    Get PDF
    Two scenarios for the penetration of relativistically intense laser radiation into an overdense plasma, accessible by self-induced transparency, are presented. For supercritical densities less than 1.5 times the critical one, penetration of laser energy occurs by soliton-like structures moving into the plasma. At higher background densities laser light penetrates over a finite length only, that increases with the incident intensity. In this regime plasma-field structures represent alternating electron layers separated by about half a wavelength by depleted regions.Comment: 9 pages, 4 figures, submitted for publication to PR
    • …
    corecore