374 research outputs found
Does Abnormal Sleep Impair Memory Consolidation in Schizophrenia?
Although disturbed sleep is a prominent feature of schizophrenia, its relation to the pathophysiology, signs, and symptoms of schizophrenia remains poorly understood. Sleep disturbances are well known to impair cognition in healthy individuals. Yet, in spite of its ubiquity in schizophrenia, abnormal sleep has generally been overlooked as a potential contributor to cognitive deficits. Amelioration of cognitive deficits is a current priority of the schizophrenia research community, but most efforts to define, characterize, and quantify cognitive deficits focus on cross-sectional measures. While this approach provides a valid snapshot of function, there is now overwhelming evidence that critical aspects of learning and memory consolidation happen offline, both over time and with sleep. Initial memory encoding is followed by a prolonged period of consolidation, integration, and reorganization, that continues over days or even years. Much of this evolution of memories is mediated by sleep. This article briefly reviews (i) what is known about abnormal sleep in schizophrenia, (ii) sleep-dependent memory consolidation in healthy individuals, (iii) recent findings of impaired sleep-dependent memory consolidation in schizophrenia, and (iv) implications of impaired sleep-dependent memory consolidation in schizophrenia. This literature suggests that abnormal sleep in schizophrenia disrupts attention and impairs sleep-dependent memory consolidation and task automation. We conclude that these sleep-dependent impairments may contribute substantially to generalized cognitive deficits in schizophrenia. Understanding this contribution may open new avenues to ameliorating cognitive dysfunction and thereby improve outcome in schizophrenia
Nonlinear crack assessment method in beams based on bispectrum-normal cloud model
Fatigue damage in engineering structures is universal. The occurrence of fatigue cracks brings unpredictable hidden dangers to a structure in terms of safety and service performance. Traditional damage identification methods, such as power spectrum analysis, are mostly based on linear elasticity theory that cannot reflect the typical nonlinear characteristics of fatigue cracks and cannot meet the higher requirements of the signal analysis method put forward by current mass detection data. To solve this problem, a numerical model of a cantilever beam with a breathing crack is established in this study. A method for diagnosing fatigue damage is studied by combining bispectral analysis and a statistical normal cloud model, which characterize the nonlinear characteristics of the structure. This method can effectively describe the nonlinear characteristics of the structure and reasonably evaluate the degree of fatigue damage in the structure. The bispectrum-normal cloud model method proposed in this study overcomes the limitations of existing linear damage detection methods in nonlinear damage detection, and can improve the efficiency of signal analysis from a statistical point of view. It has good prospects for structural nonlinear damage assessment
Recommended from our members
Network Dynamics Underlying Speed-Accuracy Trade-Offs in Response to Errors
The ability to dynamically and rapidly adjust task performance based on its outcome is fundamental to adaptive, flexible behavior. Over trials of a task, responses speed up until an error is committed and after the error responses slow down. These dynamic adjustments serve to optimize performance and are well-described by the speed-accuracy trade-off (SATO) function. We hypothesized that SATOs based on outcomes reflect reciprocal changes in the allocation of attention between the internal milieu and the task-at-hand, as indexed by reciprocal changes in activity between the default and dorsal attention brain networks. We tested this hypothesis using functional MRI to examine the pattern of network activation over a series of trials surrounding and including an error. We further hypothesized that these reciprocal changes in network activity are coordinated by the posterior cingulate cortex (PCC) and would rely on the structural integrity of its white matter connections. Using diffusion tensor imaging, we examined whether fractional anisotropy of the posterior cingulum bundle correlated with the magnitude of reciprocal changes in network activation around errors. As expected, reaction time (RT) in trials surrounding errors was consistent with predictions from the SATO function. Activation in the default network was: (i) inversely correlated with RT, (ii) greater on trials before than after an error and (iii) maximal at the error. In contrast, activation in the right intraparietal sulcus of the dorsal attention network was (i) positively correlated with RT and showed the opposite pattern: (ii) less activation before than after an error and (iii) the least activation on the error. Greater integrity of the posterior cingulum bundle was associated with greater reciprocity in network activation around errors. These findings suggest that dynamic changes in attention to the internal versus external milieu in response to errors underlie SATOs in RT and are mediated by the PCC
Aberrant error processing in relation to symptom severity in obsessive–compulsive disorder: A multimodal neuroimaging study
Background: Obsessive–compulsive disorder (OCD) is characterized by maladaptive repetitive behaviors that persist despite feedback. Using multimodal neuroimaging, we tested the hypothesis that this behavioral rigidity reflects impaired use of behavioral outcomes (here, errors) to adaptively adjust responses. We measured both neural responses to errors and adjustments in the subsequent trial to determine whether abnormalities correlate with symptom severity. Since error processing depends on communication between the anterior and the posterior cingulate cortex, we also examined the integrity of the cingulum bundle with diffusion tensor imaging. Methods: Participants performed the same antisaccade task during functional MRI and electroencephalography sessions. We measured error-related activation of the anterior cingulate cortex (ACC) and the error-related negativity (ERN). We also examined post-error adjustments, indexed by changes in activation of the default network in trials surrounding errors. Results: OCD patients showed intact error-related ACC activation and ERN, but abnormal adjustments in the post- vs. pre-error trial. Relative to controls, who responded to errors by deactivating the default network, OCD patients showed increased default network activation including in the rostral ACC (rACC). Greater rACC activation in the post-error trial correlated with more severe compulsions. Patients also showed increased fractional anisotropy (FA) in the white matter underlying rACC. Conclusions: Impaired use of behavioral outcomes to adaptively adjust neural responses may contribute to symptoms in OCD. The rACC locus of abnormal adjustment and relations with symptoms suggests difficulty suppressing emotional responses to aversive, unexpected events (e.g., errors). Increased structural connectivity of this paralimbic default network region may contribute to this impairment
Recommended from our members
Response Monitoring, Repetitive Behaviour and Anterior Cingulate Abnormalities in Autism Spectrum Disorders (ASD)
Autism spectrum disorders (ASD) are characterized by inflexible and repetitive behaviour. Response monitoring involves evaluating the consequences of behaviour and making adjustments to optimize outcomes. Deficiencies in this function, and abnormalities in the anterior cingulate cortex (ACC) on which it relies, have been reported as contributing factors to autistic disorders. We investigated whether ACC structure and function during response monitoring were associated with repetitive behaviour in ASD. We compared ACC activation to correct and erroneous antisaccades using rapid presentation event-related functional MRI in 14 control and ten ASD participants. Because response monitoring is the product of coordinated activity in ACC networks, we also examined the microstructural integrity of the white matter (WM) underlying this brain region using diffusion tensor imaging (DTI) measures of fractional anisotropy (FA) in 12 control and 12 adult ASD participants. ACC activation and FA were examined in relation to Autism Diagnostic Interview-Revised ratings of restricted and repetitive behaviour. Relative to controls, ASD participants: (i) made more antisaccade errors and responded more quickly on correct trials; (ii) showed reduced discrimination between error and correct responses in rostral ACC (rACC), which was primarily due to (iii) abnormally increased activation on correct trials and (iv) showed reduced FA in WM underlying ACC. Finally, in ASD (v) increased activation on correct trials and reduced FA in rACC WM were related to higher ratings of repetitive behaviour. These findings demonstrate functional and structural abnormalities of the ACC in ASD that may contribute to repetitive behaviour. rACC activity following errors is thought to reflect affective appraisal of the error. Thus, the hyperactive rACC response to correct trials can be interpreted as a misleading affective signal that something is awry, which may trigger repetitive attempts at correction. Another possible consequence of reduced affective discrimination between error and correct responses is that it might interfere with the reinforcement of responses that optimize outcomes. Furthermore, dysconnection of the ACC, as suggested by reduced FA, to regions involved in behavioural control might impair on-line modulations of response speed to optimize performance (i.e. speed-accuracy trade-off) and increase error likelihood. These findings suggest that in ASD, structural and functional abnormalities of the ACC compromise response monitoring and thereby contribute to behaviour that is rigid and repetitive rather than flexible and responsive to contingencies. Illuminating the mechanisms and clinical significance of abnormal response monitoring in ASD represents a fruitful avenue for further research
Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives
Introduction: Chronic medicated patients with schizophrenia have marked reductions in sleep spindle activity and a correlated deficit in sleep-dependent memory consolidation. Using archival data, we investigated whether antipsychotic-naïve early course patients with schizophrenia and young non-psychotic first-degree relatives of patients with schizophrenia also show reduced sleep spindle activity and whether spindle activity correlates with cognitive function and symptoms. Method: Sleep spindles during Stage 2 sleep were compared in antipsychotic-naïve adults newly diagnosed with psychosis, young non-psychotic first-degree relatives of schizophrenia patients and two samples of healthy controls matched to the patients and relatives. The relations of spindle parameters with cognitive measures and symptom ratings were examined. Results: Early course schizophrenia patients showed significantly reduced spindle activity relative to healthy controls and to early course patients with other psychotic disorders. Relatives of schizophrenia patients also showed reduced spindle activity compared with controls. Reduced spindle activity correlated with measures of executive function in early course patients, positive symptoms in schizophrenia and IQ estimates across groups. Conclusions: Like chronic medicated schizophrenia patients, antipsychotic-naïve early course schizophrenia patients and young non-psychotic relatives of individuals with schizophrenia have reduced sleep spindle activity. These findings indicate that the spindle deficit is not an antipsychotic side-effect or a general feature of psychosis. Instead, the spindle deficit may predate the onset of schizophrenia, persist throughout its course and be an endophenotype that contributes to cognitive dysfunction
Bispectral dynamics features for characterizing structural fatigue damage
Fatigue damage is a type of damage usually occurring to repeatedly loaded elements of structures in various engineering fields. Accumulation of fatigue damage may cause failure of structural elements. Identification of incipient fatigue damage is essential to ensure safety of structures. Fatigue crack under repeated loads commonly behaves in a nonlinear dynamic manner, typically manifested by both occurrence of higher harmonic components and interaction of harmonic components. Interrogation of nonlinear dynamic manner provides a promising way to characterize structural fatigue damage. This study aims at developing a new method to interrogate nonlinear dynamic manner for fatigue damage identification. This method is based on bispectral analysis of structural vibrational responses. This method portrays fatigue damage by inspecting the presence of higher harmonic components and quantifying the interaction of these harmonic components. The method can precisely locate and quantify a small-sized fatigue damage in a cantilever beam, presenting great accuracy in fatigue damage identification
Sigma frequency dependent motor learning in Williams syndrome
Abstract There are two basic stages of fine motor learning: performance gain might occur during practice (online learning), and improvement might take place without any further practice (offline learning). Offline learning, also called consolidation, has a sleep-dependent stage in terms of both speed and accuracy of the learned movement. Sleep spindle or sigma band characteristics affect motor learning in typically developing individuals. Here we ask whether the earlier found, altered sigma activity in a neurodevelopmental disorder (Williams syndrome, WS) predicts motor learning. TD and WS participants practiced in a sequential finger tapping (FT) task for two days. Although WS participants started out at a lower performance level, TD and WS participants had a comparable amount of online and offline learning in terms of the accuracy of movement. Spectral analysis of WS sleep EEG recordings revealed that motor accuracy improvement is intricately related to WS-specific NREM sleep EEG features in the 8–16 Hz range profiles: higher 11–13.5 Hz z-transformed power is associated with higher offline FT accuracy improvement; and higher oscillatory peak frequencies are associated with lower offline accuracy improvements. These findings indicate a fundamental relationship between sleep spindle (or sigma band) activity and motor learning in WS
Failure to mobilize cognitive control for challenging tasks correlates with symptom severity in schizophrenia
Deficits in the adaptive, flexible control of behavior contribute to the clinical manifestations of schizophrenia. We used functional MRI and an antisaccade paradigm to examine the neural correlates of cognitive control deficits and their relations to symptom severity. Thirty-three chronic medicated outpatients with schizophrenia and 31 healthy controls performed an antisaccade paradigm. We examined differences in recruitment of the cognitive control network and task performance for Hard (high control) versus Easy (low control) antisaccade trials within and between groups. We focused on the key regions involved in ‘top-down’ control of ocular motor structures – dorsal anterior cingulate cortex, dorsolateral and ventrolateral prefrontal cortex. In patients, we examined whether difficulty implementing cognitive control correlated with symptom severity. Patients made more errors overall, and had shorter saccadic latencies than controls on correct Hard vs. Easy trials. Unlike controls, patients failed to increase activation in the cognitive control network for Hard vs. Easy trials. Reduced activation for Hard vs. Easy trials predicted higher error rates in both groups and increased symptom severity in schizophrenia. These findings suggest that patients with schizophrenia are impaired in mobilizing cognitive control when presented with challenges and that this contributes to deficits suppressing prepotent but contextually inappropriate responses, to behavior that is stimulus-bound and error-prone rather than flexibly guided by context, and to symptom expression. Therapies aimed at increasing cognitive control may improve both cognitive flexibility and reduce the impact of symptoms
Recommended from our members
Dissociable Genetic Contributions to Error Processing: A Multimodal Neuroimaging Study
Background: Neuroimaging studies reliably identify two markers of error commission: the error-related negativity (ERN), an event-related potential, and functional MRI activation of the dorsal anterior cingulate cortex (dACC). While theorized to reflect the same neural process, recent evidence suggests that the ERN arises from the posterior cingulate cortex not the dACC. Here, we tested the hypothesis that these two error markers also have different genetic mediation. Methods: We measured both error markers in a sample of 92 comprised of healthy individuals and those with diagnoses of schizophrenia, obsessive-compulsive disorder or autism spectrum disorder. Participants performed the same task during functional MRI and simultaneously acquired magnetoencephalography and electroencephalography. We examined the mediation of the error markers by two single nucleotide polymorphisms: dopamine D4 receptor (DRD4) C-521T (rs1800955), which has been associated with the ERN and methylenetetrahydrofolate reductase (MTHFR) C677T (rs1801133), which has been associated with error-related dACC activation. We then compared the effects of each polymorphism on the two error markers modeled as a bivariate response. Results: We replicated our previous report of a posterior cingulate source of the ERN in healthy participants in the schizophrenia and obsessive-compulsive disorder groups. The effect of genotype on error markers did not differ significantly by diagnostic group. DRD4 C-521T allele load had a significant linear effect on ERN amplitude, but not on dACC activation, and this difference was significant. MTHFR C677T allele load had a significant linear effect on dACC activation but not ERN amplitude, but the difference in effects on the two error markers was not significant. Conclusions: DRD4 C-521T, but not MTHFR C677T, had a significant differential effect on two canonical error markers. Together with the anatomical dissociation between the ERN and error-related dACC activation, these findings suggest that these error markers have different neural and genetic mediation
- …