22 research outputs found

    BRCA2 inhibition enhances cisplatin-mediated alterations in tumor cell proliferation, metabolism, and metastasis

    Get PDF
    Tumor cells have unstable genomes relative to non-tumor cells. Decreased DNA integrity resulting from tumor cell instability is important in generating favorable therapeutic indices, and intact DNA repair mediates resistance to therapy. Targeting DNA repair to promote the action of anti-cancer agents is therefore an attractive therapeutic strategy. BRCA2 is involved in homologous recombination repair. BRCA2 defects increase cancer risk but, paradoxically, cancer patients with BRCA2 mutations have better survival rates. We queried TCGA data and found that BRCA2 alterations led to increased survival in patients with ovarian and endometrial cancer. We developed a BRCA2-targeting second-generation antisense oligonucleotide (ASO), which sensitized human lung, ovarian, and breast cancer cells to cisplatin by as much as 60%. BRCA2 ASO treatment overcame acquired cisplatin resistance in head and neck cancer cells, but induced minimal cisplatin sensitivity in non-tumor cells. BRCA2 ASO plus cisplatin reduced respiration as an early event preceding cell death, concurrent with increased glucose uptake without a difference in glycolysis. BRCA2 ASO and cisplatin decreased metastatic frequency invivo by 77%. These results implicate BRCA2 as a regulator of metastatic frequency and cellular metabolic response following cisplatin treatment. BRCA2 ASO, in combination with cisplatin, is a potential therapeutic anti-cancer agent

    The thiosemicarbazone Me2NNMe2 induces paraptosis by disrupting the ER thiol redox homeostasis based on protein disulfide isomerase inhibition

    Get PDF
    Due to their high biological activity, thiosemicarbazones have been developed for treatment of diverse diseases, including cancer, resulting in multiple clinical trials especially of the lead compound Triapine. During the last years, a novel subclass of anticancer thiosemicarbazones has attracted substantial interest based on their enhanced cytotoxic activity. Increasing evidence suggests that the double-dimethylated Triapine derivative Me2NNMe2 differs from Triapine not only in its efficacy but also in its mode of action. Here we show that Me2NNMe2- (but not Triapine)-treated cancer cells exhibit all hallmarks of paraptotic cell death including, besides the appearance of endoplasmic reticulum (ER)-derived vesicles, also mitochondrial swelling and caspase-independent cell death via the MAPK signaling pathway. Subsequently, we uncover that the copper complex of Me2NNMe2 (a supposed intracellular metabolite) inhibits the ER-resident protein disulfide isomerase, resulting in a specific form of ER stress based on disruption of the Ca2+ and ER thiol redox homeostasis. Our findings indicate that compounds like Me2NNMe2 are of interest especially for the treatment of apoptosis-resistant cancer and provide new insights into mechanisms underlying drug-induced paraptosis. © 2018, The Author(s)

    HPV-Positive and -Negative Cervical Cancers Are Immunologically Distinct

    No full text
    Although infection with human papillomavirus (HPV) is associated with nearly all cervical cancers (CC), a small proportion are HPV-negative. Recently, it has become clear that HPV-negative CC represent a distinct disease phenotype compared to HPV-positive disease and exhibit increased mortality. In addition, variations between different HPV types associated with CC have been linked to altered molecular pathology and prognosis. We compared the immune microenvironments of CC caused by HPV α9 species (HPV16-like), HPV α7 species (HPV18-like) and HPV-negative disease. HPV-negative CC appeared distinct from other subtypes, with greatly reduced levels of lymphocyte infiltration compared to either HPV α9 or α7 CC. Besides reduced levels of markers indicative of B, T, and NK lymphocytes, the expression of T-cell effector molecules, activation/exhaustion markers, and T-cell receptor diversity were also significantly lower in HPV-negative CC. Interestingly, HPV-negative CC expressed much higher levels of potential neoantigens than HPV-positive CC. These results identify profound differences between the immune landscape of HPV-positive and HPV-negative CC as well as modest differences between HPV α9 and α7 CC. These differences may contribute to altered patient outcomes between HPV-negative and HPV-positive CC and potentially between CC associated with different HPV types

    Treatment-naive HPV plus head and neck cancers display a T-cell-inflamed phenotype distinct from their HPV- counterparts that has implications for immunotherapy

    No full text
    Cancers progress when the immune system fails to identify and eliminate malignant cells. Recognition of this, combined with advances in tumor immunology, has allowed development of therapies that induce effective anti-tumor immune responses. For incompletely-understood reasons, effective responses to immunotherapy occur in some patients and not others. Head and neck squamous cell carcinomas (HNSCC) are a common cancer type that can be divided into two subsets based on human papillomavirus (HPV) status. HPV status is a strong predictor of positive clinical outcome. Expression of exogenous viral antigens by HPV+, but not HPV-, HNSCC allows direct comparison of the immune status (immune cell presence and characteristics) between these two otherwise anatomically-similar tumors. Using TCGA data, we compared the immune landscape between HPV+ and HPV- treatment-naive HNSCC. As compared to HPV- samples, HPV+ HNSCC exhibited a strong Th1 response characterized by increased infiltration with multiple types of immune cells and expression of their effector molecules. HPV + HNSCC also expressed higher levels of CD39 and multiple T-cell exhaustion markers including LAG3, PD1, TIGIT, and TIM3 compared to HPV- HNSCC. Importantly, patients with higher expression of these exhaustion markers-indicative of a T-cell-inflamed tumor-correlated with markedly improved survival in HPV+, but not HPV-, HNSCC. Thus, profound differences exist between the immune landscape of HPV+ and HPV-HNSCC. These results suggest that immune checkpoint inhibitor therapy is a promising treatment strategy for HPV + HNSCC, and that expression of immune checkpoint molecules could serve as a predictive biomarker of patient outcome in HPV + HNSCC
    corecore