4,536 research outputs found

    Suzaku Detection of Thermal X-Ray Emission Associated with the Western Radio Lobe of Fornax A

    Full text link
    We present the results of X-ray mapping observations of the western radio lobe of the Fornax A galaxy, using the X-ray Imaging Spectrometer (XIS) onboard the Suzaku satellite with a total exposure time of 327 ks. The purpose of this study is to investigate the nature and spatial extent of the diffuse thermal emission around the lobe by exploiting the low and stable background of the XIS. The diffuse thermal emission had been consistently reported in all previous studies of this region, but its physical nature and relation to the radio lobe had not been examined in detail. Using the data set covering the entire western lobe and the central galaxy NGC 1316, as well as comparison sets in the vicinity, we find convincingly the presence of thermal plasma emission with a temperature of ~1 keV in excess of conceivable background and contaminating emission (cosmic X-ray background, Galactic halo, intra-cluster gas of Fornax, interstellar gas of NGC 1316, and the ensemble of point-like sources). Its surface brightness is consistent with having a spherical distribution peaking at the center of the western lobe with a projected radius of ~12 arcmin. If the volume filling factor of the thermal gas is assumed to be unity, its estimated total mass amounts to ~10^{10} M_sun, which would be ~10^{2} times that of the central black hole and comparable to that of the current gas mass of the host galaxy. Its energy density is comparable to or larger than those in the magnetic field and non-thermal electrons responsible for the observed radio and X-ray emission.Comment: 10 pages, 5 figures, accepted for publication in PAS

    Internal Josephson Effects in Spinor Dipolar Bose--Einstein Condensates

    Full text link
    We theoretically study the internal Josephson effect, which is driven by spin exchange interactions and magnetic dipole-dipole interactions, in a three-level system for spin-1 Bose--Einstein condensates, obtaining novel spin dynamics. We introduce single spatial mode approximations into the Gross--Pitaevskii equations and derive the Josephson type equations, which are analogous to tunneling currents through three junctions between three superconductors. From an analogy with two interacting nonrigid pendulums, we identify unique varied oscillational modes, called the 0--Ï€\pi, 0--runningrunning, runningrunning--runningrunning, 2n\pi & running--2Ï€2\pi, singlenonrigidpendulumsingle nonrigid pendulum, and tworigidpendulumstwo rigid pendulums phase modes. These Josephson modes in the three states are expected to be found in real atomic Bose gas systems.Comment: 9 pages, 13 figure

    Maximal entanglement of two spinor Bose-Einstein condensates

    Full text link
    Starting with two weakly-coupled anti-ferromagnetic spinor condensates, we show that by changing the sign of the coefficient of the spin interaction, U2U_{2}, via an optically-induced Feshbach resonance one can create an entangled state consisting of two anti-correlated ferromagnetic condensates. This state is maximally entangled and a generalization of the Bell state from two anti-correlated spin-1/2 particles to two anti-correlated spin−N/2-N/2 atomic samples, where NN is the total number of atoms.Comment: 5 pages, 3 figures, accepted for publication in PR

    Supersymmetry in gauge theories with extra dimensions

    Get PDF
    We show that a quantum-mechanical N=2 supersymmetry is hidden in 4d mass spectrum of any gauge invariant theories with extra dimensions. The N=2 supercharges are explicitly constructed in terms of differential forms. The analysis can be extended to extra dimensions with boundaries, and for a single extra dimension we clarify a possible set of boundary conditions consistent with 5d gauge invariance, although some of the boundary conditions break 4d gauge symmetries.Comment: 18 page

    Gas, Iron and Gravitational Mass in Galaxy Clusters: The General Lack of Cluster Evolution at z < 1.0

    Full text link
    We have analyzed the ASCA data of 29 nearby clusters of galaxies systematically, and obtained temperatures, iron abundances, and X-ray luminosities of their intracluster medium (ICM). We also estimate ICM mass using the beta model, and then evaluate iron mass contained in the ICM and derive the total gravitating mass. This gives the largest and most homogeneous information about the ICM derived only by the ASCA data. We compare these values with those of distant clusters whose temperatures, abundances, and luminosities were also measured with ASCA, and find no clear evidence of evolution for the clusters at z<1.0. Only the most distant cluster at z=1.0, AXJ2019.3+1127, has anomalously high iron abundance, but its iron mass in the ICM may be among normal values for the other clusters, because the ICM mass may be smaller than the other clusters. This may suggest a hint of evolution of clusters at z ~ 1.0.Comment: 23 pages including 5 figures. Using PASJ2.sty, and PASJ95.sty. Accepted by PAS
    • …
    corecore