11 research outputs found

    The cross-talk between lateral sheet dimensions of pristine graphene oxide nanoparticles and Ni2+ adsorption

    No full text
    This study investigated the removal of nickel(II) ions by using two sizes of graphene oxide nanoparticles (GO – 450 nm and GO – 200 nm). The thickness and lateral sheet dimensions of GO are considered to be an important adsorbent and promising method for sufficient removal of metals like nickel, lead, copper, etc. The graphite oxide was prepared by oxidation–reduction reaction (Hummers method), and the final product was labelled as GO – 450 nm. A tip sonicator was used to reduce the size of particles to 200 nm under controlled conditions (time and power of sonication). FTIR spectroscopy shows that both sizes of GO particles contain several types of oxygen groups distributed onto the surface of GO particles. Scanning electron microscopy (SEM) and the statistical analysis confirmed the formation of these two sizes of GO particles. The GO – 200 nm performed better removal of Ni(II) compared with GO – 450 nm, due to more surfaces being available. The adsorption capacity of GO particles increased drastically from 45 mg g−1 to 75 mg g−1 for GO – 450 nm and GO – 200 nm respectively, these values were carried out after 2 h of incubation. The kinetics of adsorption and several parameters like initial concentration at equilibrium, pH, temperature, and adsorbent dose are controlled and studied by using UV-visible spectroscopy. The results indicated a significant potential of GO – 200 nm as an adsorbent for Ni(II) ion removal. An additional experiment was performed to estimate the surface area of GO – 450 nm and GO – 200 nm, the results show that the surface areas of GO – 450 nm and GO – 200 nm are 747.8 m2 g−1 and 1052.2 m2 g−1 respectively

    Graphene oxide - Gelatin nanohybrids as functional tools for enhanced carboplatin activity in neuroblastoma cells

    No full text
    Purpose Preparation of Nanographene oxide (NGO) - Gelatin hybrids for efficient treatment of Neuroblastoma. Methods Nanohybrids were prepared via non-covalent interactions. Spectroscopic tools have been used to discriminate the chemical states of NGO prior and after gelatin coating, with UV visible spectroscopy revealing the maximum binding capacity of gelatin to NGO. Raman and X-ray photoelectron spectroscopy (XPS) demonstrated NGO and Gelatin-NGO nanohybrids through a new chemical environments produced after noncovalent interaction. Microscopic analyses, atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to estimate the thickness of samples and the lateral width in the nanoscale, respectively. Results The cell viability assay validated Gelatin-NGO nanohybrids as a useful nanocarrier for Carboplatin (CP) release and delivery, without obvious signs of toxicity. The nano-sized NGO (200 nm and 300 nm) did not enable CP to kill the cancer cells efficiently, whilst the CP loaded Gel-NGO 100 nm resulted in a synergistic activity through increasing the local concentration of CP inside the cancer cells. Conclusions The nanohybrids provoked high stability and dispersibility in physiological media, as well as enhanced the anticancer activity of the chemotherapy agent Carboplatin (CP) in human neuroblastoma cells

    Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation

    No full text
    corecore