7,369 research outputs found

    Space station integrated propulsion and fluid systems study

    Get PDF
    The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems

    Direct-write, focused ion beam-deposited,7 K superconducting C-Ga-O nanowire

    Full text link
    We have fabricated C-Ga-O nanowires by gallium focused ion beam-induced deposition from the carbon-based precursor phenanthrene. The electrical conductivity of the nanowires is weakly temperature dependent below 300 K, and indicates a transition to a superconducting state below Tc = 7 K. We have measured the temperature dependence of the upper critical field Hc2(T), and estimate a zero temperature critical field of 8.8 T. The Tc of this material is approximately 40% higher than that of any other direct write nanowire, such as those based on C-W-Ga, expanding the possibility of fabricating direct-write nanostructures that superconduct above liquid helium temperaturesComment: Accepted for AP

    Marine Biodiversity and Ecosystem Health of Ilhas Selvagens, Portugal

    Get PDF
    In September 2015, National Geographic's Pristine Seas project, in conjunction with the Instituto Universitário-Portugal, The Waitt Institute, the University of Western Australia, and partners conducted a comprehensive assessment of the rarely surveyed Ilhas Selvagens to explore the marine environment, especially the poorly understood deep sea and open ocean areas, and quantify the biodiversity of the nearshore marine environment

    The architectures of media power: editing, the newsroom, and urban public space

    Get PDF
    This paper considers the relation of the newsroom and the city as a lens into the more general relation of production spaces and mediated publics. Leading theoretically from Lee and LiPuma’s (2002) notion of ‘cultures of circulation’, and drawing on an ethnography of the Toronto Star, the paper focuses on how media forms circulate and are enacted through particular practices and material settings. With its attention to the urban milieus and orientations of media organizations, this paper exhibits both affinities with but also differences to current interests in the urban architectures of media, which describe and theorize how media get ‘built into’ the urban experience more generally. In looking at editing practices situated in the newsroom, an emphasis is placed on the phenomenological appearance of media forms both as objects for material assembly as well as more abstracted subjects of reflexivity, anticipation and purposiveness. Although this is explored with detailed attention to the settings of the newsroom and the city, the paper seeks to also provide insight into the more general question of how publicness is material shaped and sited

    Dynamic Spin Response for Heisenberg Ladders

    Full text link
    We employ the recently proposed plaquette basis to investigate static and dynamic properties of isotropic 2-leg Heisenberg spin ladders. Simple non-interacting multi-plaquette states provide a remarkably accurate picture of the energy/site and dynamic spin response of these systems. Insights afforded by this simple picture suggest a very efficient truncation scheme for more precise calculations. When the small truncation errors are accounted for using recently developed Contractor Renormalization techniques, very accurate results requiring a small fraction of the computational effort of exact calculations are obtained. These methods allow us to determine the energy/site, gap, and spin response of 2x16 ladders. The former two values are in good agreement with density matrix renormalization group results. The spin response calculations show that nearly all the strength is concentrated in the lowest triplet level and that coherent many-body effects enhance the response/site by nearly a factor of 1.6 over that found for 2x2 systems.Comment: 9 pages with two enclosed postscript figure

    A Plaquette Basis for the Study of Heisenberg Ladders

    Full text link
    We employ a plaquette basis-generated by coupling the four spins in a 2×22\times2 lattice to a well-defined total angular momentum-for the study of Heisenberg ladders with antiferromagnetic coupling. Matrix elements of the Hamiltonian in this basis are evaluated using standard techniques in angular-momentum (Racah) algebra. We show by exact diagonalization of small (2×42\times4 and 2×62\times6) systems that in excess of 90% of the ground-state probability is contained in a very small number of basis states. These few basis states can be used to define a severely truncated basis which we use to approximate low-lying exact eigenstates. We show how, in this low-energy basis, the isotropic spin-1/2 Heisenberg ladder can be mapped onto an anisotropic spin-1 ladder for which the coupling along the rungs is much stronger than the coupling between the rungs. The mapping thereby generates two distinct energy scales which greatly facilitates understanding the dynamics of the original spin-1/2 ladder. Moreover, we use these insights to define an effective low-energy Hamiltonian in accordance to the newly developed COntractor REnormalization group (CORE) method. We show how a simple range-2 CORE approximation to the effective Hamiltonian to be used with our truncated basis reproduces the low-energy spectrum of the exact 2×62\times6 theory at the \alt 1% level.Comment: 12 pages with two postscript figure

    Metal-to-insulator transition and magnetic ordering in CaRu_{1-x}Cu_xO_3

    Full text link
    CaRuO_3 is perovskite with an orthorhombic distortion and is believed to be close to magnetic ordering. Magnetic studies of single crystal and polycrystalline CaRu_{1-x}Cu_xO_3 (0\le x \le 15 at.%Cu) reveal that spin-glass-like transition develops for x\le 7 at.%Cu and obtained value for effective magnetic moment p_{eff}=3.55 mu_B for x=5 at.% Cu, single crystal, indicates presence of Ru^{5+}. At higher Cu concentrations more complex magnetic behaviors are observed. Electrical resistivity measured on polycrystalline samples shows metal-to-insulator transition (MIT) at 51 K for only 2 at.% Cu. Charge compensation, which is assumed to be present upon Cu^{2+/3+} substitution, induces appearance of Ru^{5+} and/or creation of oxygen vacancies in crystal structure. Since the observed changes in physical properties are completely attributable to the charge compensation, they cannot be related to behaviors of pure compound where no such mechanism is present. This study provides the criterion for "good" chemical probes for studying Ru-based perovskites.Comment: 12 pages, 7 figure
    corecore