8,019 research outputs found

    Non-rotating and rotating neutron stars in the extended field theoretical model

    Full text link
    We study the properties of non-rotating and rotating neutron stars for a new set of equations of state (EOSs) with different high density behaviour obtained using the extended field theoretical model. The high density behaviour for these EOSs are varied by varying the ω−\omega-meson self-coupling and hyperon-meson couplings in such a way that the quality of fit to the bulk nuclear observables, nuclear matter incompressibility coefficient and hyperon-nucleon potential depths remain practically unaffected. We find that the largest value for maximum mass for the non-rotating neutron star is 2.1M⊙2.1M_\odot. The radius for the neutron star with canonical mass is 12.8−14.112.8 - 14.1 km provided only those EOSs are considered for which maximum mass is larger than 1.6M⊙1.6M_\odot as it is the lower bound on the maximum mass measured so far. Our results for the very recently discovered fastest rotating neutron star indicate that this star is supra massive with mass 1.7−2.7M⊙1.7 - 2.7M_\odot and circumferential equatorial radius 12−1912 - 19 km.Comment: 28 pages, 12 figures. Phys. Rev. C (in press

    Underwater detection of dangerous substances: status the SABAT project

    Get PDF
    The Neutron Activation Analysis (NAA) plays an exceptional role in the modern nuclear engineering, especially in detection of hazardous substances. However, in the aquatic environment, there are still many problems to be solved for effective usage of this technique. We present status of SABAT (Stoichiometry Analysis By Activation Techniques), one of the projects aiming at construction of an underwater device for non-invasive threat detection based on the NAA

    Therapeutic evaluation of homeopathic treatment for canine oral papillomatosis

    Get PDF
    Aim: A study was conducted to evaluate the ameliorative potential of homeopathic drugs in combination (Sulfur 30C, Thuja 30C, Graphites 30C, and Psorinum 30C) in 16 dogs affected with oral papillomatosis which was not undergone any previous treatment. Materials and Methods: Dogs affected with oral papillomatosis, which have not undergone any initial treatment and fed with a regular diet. Dogs (total=16) were randomly divided into two groups, namely, homeopathic treatment group (n=8) and placebo control group (n=8). Random number table was used for allocation. Homeopathic combination of drugs and placebo drug (distilled water) was administered orally twice daily for 15 days. Clinical evaluation in both groups of dogs was performed by the same investigator throughout the period of study (12 months). Dogs were clinically scored for oral lesions on days 0, 5, 7, 10, 15, 20, 25, 30, 45, 60, 90, 120, and 150 after initiation of treatment. Results: The homeopathic treatment group showed early recovery with a significant reduction in oral lesions reflected by clinical score (p<0.001) in comparison to placebo-treated group. Oral papillomatous lesions regressed in the homeopathic group between 7 and 15 days, whereas regression of papilloma in the placebo group occurred between 90 and 150 days. The homeopathic treated group was observed for 12 months post-treatment period and no recurrence of oral papilloma was observed. Conclusion: The current study proves that the combination of homeopathy drugs aids in fastening the regression of canine oral papilloma and proved to be safe and cost-effective

    Correlations in the properties of static and rapidly rotating compact stars

    Full text link
    Correlations in the properties of the static compact stars (CSs) and the ones rotating with the highest observed frequency of 1122Hz are studied using a large set of equations of state (EOSs). These EOSs span various approaches and their chemical composition vary from the nucleons to hyperons and quarks in β\beta-equilibrium. It is found that the properties of static CS, like, the maximum gravitational mass MmaxstatM_{\rm max}^{\rm stat} and radius R1.4statR_{1.4}^{\rm stat} corresponding to t he canonical mass and supramassive or non-supramassive nature of the CS rotating at 1122 Hz are strongly correlated. In particular, only those EOSs yield the CS rotating at 1122Hz to be non-supramassive for which \left (\frac{M_{\rm max}^{\rm stat}}{M_\odot}\right )^{1/2} \left (\frac{10{\rm km}}{R_{1.4}^{\rm stat}})^{3/2} is greater than unity. Suitable parametric form which can be used to split the MmaxstatM_{\rm max}^{\rm stat} −- R1.4statR_{1.4}^{\rm stat} plane into the regions of different supramassive nature of the CS rotating at 1122Hz is presented. Currently measured maximum gravitational mass 1.76M⊙M_\odot of PSR J0437-4715 suggests that the CS rotating at 1122Hz can be non-supramassive provided R1.4stat⩽12.4R_{1.4}^{\rm stat} \leqslant 12.4 km.Comment: 13 pages, 4 figures, Appearing in Phys. Rev.

    SOLVING HYBRID FUZZY FRACTIONAL DIFFERENTIAL EQUATIONS BY IMPROVED EULER METHOD

    Get PDF
    In this paper we study numerical methods for hybrid fuzzy fractional differential equations and the iteration method is used to solve the hybrid fuzzy fractional differential equations with a fuzzy initial condition. We consider a differential equation of fractional order  and we compared the results with their exact solutions in order to demonstrate the validity and applicability of the method. We further give the definition of the Degree of Sub element hood of hybrid fuzzy fractional differential equations with examples.

    THE RESTRAINED STEINER NUMBER OF A GRAPH

    Get PDF
    For a connected graph G = (V, E) of order p, a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets. A set W of vertices of a graph G is a restrained Steiner set if W is a Steiner set, and if either W = V or the subgraph G[V − W ] induced by V − W has no isolated vertices. The minimum cardinality of a restrained Steiner set of G is the restrained Steiner number of G, and is denoted by s r (G). The restrained Steiner number of certain classes of graphs are determined. Connected graphs of order p with restrained Steiner number 2 are characterized. Various necessary conditions for the restrained Steiner number of a graph to be p are given. It is shown that, for integers a, b and p with 4 ≤ a ≤ b ≤ p, there exists a connected graph G of order p such that s(G) = a and s r (G) = b. It is also proved that for every pair of integers a, b with a ≥ 3 and b ≥ 3, there exists a connected graph G with s r (G) = a and g r (G) = b
    • …
    corecore