200,297 research outputs found
Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank
The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data
Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment
Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value
Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants
The ubiquity of planets and diversity of planetary systems reveal planet
formation encompass many complex and competing processes. In this series of
papers, we develop and upgrade a population synthesis model as a tool to
identify the dominant physical effects and to calibrate the range of physical
conditions. Recent planet searches leads to the discovery of many
multiple-planet systems. Any theoretical models of their origins must take into
account dynamical interaction between emerging protoplanets. Here, we introduce
a prescription to approximate the close encounters between multiple planets. We
apply this method to simulate the growth, migration, and dynamical interaction
of planetary systems. Our models show that in relatively massive disks, several
gas giants and rocky/icy planets emerge, migrate, and undergo dynamical
instability. Secular perturbation between planets leads to orbital crossings,
eccentricity excitation, and planetary ejection. In disks with modest masses,
two or less gas giants form with multiple super-Earths. Orbital stability in
these systems is generally maintained and they retain the kinematic structure
after gas in their natal disks is depleted. These results reproduce the
observed planetary mass-eccentricity and semimajor axis-eccentricity
correlations. They also suggest that emerging gas giants can scatter residual
cores to the outer disk regions. Subsequent in situ gas accretion onto these
cores can lead to the formation of distant (> 30AU) gas giants with nearly
circular orbits.Comment: 54 pages, 14 Figures; accepted for publication in Astrophysical
Journa
Partonic Effects in Heavy Ion Collisions at RHIC
Effects of partonic interactions in heavy ion collisions at RHIC are studied
in a multiphase transport model (AMPT) that includes both initial partonic and
final hadronic interactions.It is found that a large parton scattering cross
section is needed to understand the measured elliptic flow of pions and
two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest,
Hungary, March 3-7, 200
Energy-Efficient selective activation in Femtocell Networks
Provisioning the capacity of wireless networks is difficult when peak load is significantly higher than average load, for example, in public spaces like airports or train stations. Service providers can use femtocells and small cells to increase local capacity, but deploying enough femtocells to serve peak loads requires a large number of femtocells that will remain idle most of the time, which wastes a significant amount of power.
To reduce the energy consumption of over-provisioned femtocell networks, we formulate a femtocell selective activation problem, which we formalize as an integer nonlinear optimization problem. Then we introduce GREENFEMTO, a distributed femtocell selective activation algorithm that deactivates idle femtocells to
save power and activates them on-the-fly as the number of users increases. We prove that GREENFEMTO converges to a locally Pareto optimal solution and demonstrate its performance using extensive simulations of an LTE wireless system. Overall, we find that GREENFEMTO requires up to 55% fewer femtocells to serve a given user load, relative to an existing femtocell power-saving procedure, and comes within 15% of a globally optimal solution
Spatiotemporal instability of a confined capillary jet
Recent experimental studies on the instability appearance of capillary jets
have revealed the capabilities of linear spatiotemporal instability analysis to
predict the parametrical map where steady jetting or dripping takes place. In
this work, we present an extensive analytical, numerical and experimental
analysis of confined capillary jets extending previous studies. We propose an
extended, accurate analytic model in the limit of low Reynolds flows, and
introduce a numerical scheme to predict the system response when the liquid
inertia is not negligible. Theoretical predictions show a remarkable accuracy
with results from the extensive experimental exploration provided.Comment: Submitted to the Physical Review E (20-March-2008
- …
