349 research outputs found
Structure and Vibrations of the Vicinal Copper (211) Surface
We report a first principles theoretical study of the surface relaxation and
lattice dynamics of the Cu(211) surface using the plane wave pseudopotential
method. We find large atomic relaxations for the first several atomic layers
near the step edges on this surface, and a substantial step-induced
renormalization of the surface harmonic force constants. We use the results to
study the harmonic fluctuations around the equilibrium structure and find three
new step-derived features in the zone center vibrational spectrum. Comparison
of these results with previous theoretical work and weith experimental studies
using inelastic He scattering are reported.Comment: 6 Pages RevTex, 7 Figures in Postscrip
Quantifying the Energetics and Length Scales of Carbon Segregation to Fe Symmetric Tilt Grain Boundaries Using Atomistic Simulations
Segregation of impurities to grain boundaries plays an important role in both
the stability and macroscopic behavior of polycrystalline materials. The
research objective in this work is to better characterize the energetics and
length scales involved with the process of solute and impurity segregation to
grain boundaries. Molecular dynamics simulations are used to calculate the
segregation energies for carbon within multiple grain boundary sites over a
database of 125 symmetric tilt grain boundaries in Fe. The simulation results
show that the majority of atomic sites near the grain boundary have segregation
energies lower than in the bulk. Moreover, depending on the boundary, the
segregation energies approach the bulk value approximately 5-12 \AA\ away from
the center of the grain boundary, providing an energetic length scale for
carbon segregation. A subsequent data reduction and statistical representation
of this dataset provides critical information such as about the mean
segregation energy and the associated energy distributions for carbon atoms as
a function of distance from the grain boundary, which quantitatively informs
higher scale models with energetics and length scales necessary for capturing
the segregation behavior of impurities in Fe. The significance of this research
is the development of a methodology capable of ascertaining segregation
energies over a wide range of grain boundary character (typical of that
observed in polycrystalline materials), which herein has been applied to carbon
segregation in a specific class of grain boundaries in iron
Charge redistribution at Pd surfaces: ab initio grounds for tight-binding interatomic potentials
A simplified tight-binding description of the electronic structure is often
necessary for complex studies of surfaces of transition metal compounds. This
requires a self-consistent parametrization of the charge redistribution, which
is not obvious for late transition series elements (such as Pd, Cu, Au), for
which not only d but also s-p electrons have to be taken into account. We show
here, with the help of an ab initio FP-LMTO approach, that for these elements
the electronic charge is unchanged from bulk to the surface, not only per site
but also per orbital. This implies different level shifts for each orbital in
order to achieve this orbital neutrality rule. Our results invalidate any
neutrality rule which would allow charge redistribution between orbitals to
ensure a common rigid shift for all of them. Moreover, in the case of Pd, the
power law which governs the variation of band energy with respect to
coordination number, is found to differ significantly from the usual
tight-binding square root.Comment: 6 pages, 2 figures, Latex; Phys.Rev. B 56 (1997
Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100)
The rate of diffusion of a Cu adatom on the Cu(100) surface is calculated
using thermodynamic integration within the transition state theory. The results
are found to be in excellent agreement with the essentially exact values from
molecular-dynamics simulations. The activation energy and related entropy are
shown to be effectively independent of temperature, thus establishing the
validity of the Arrhenius law over a wide range of temperatures. Our study
demonstrates the equivalence of diffusion rates calculated using thermodynamic
integration within the transition state theory and direct molecular-dynamics
simulations.Comment: 4 pages (revtex), two figures (postscript
Measuring kinetic coefficients by molecular dynamics simulation of zone melting
Molecular dynamics simulations are performed to measure the kinetic
coefficient at the solid-liquid interface in pure gold. Results are obtained
for the (111), (100) and (110) orientations. Both Au(100) and Au(110) are in
reasonable agreement with the law proposed for collision-limited growth. For
Au(111), stacking fault domains form, as first reported by Burke, Broughton and
Gilmer [J. Chem. Phys. {\bf 89}, 1030 (1988)]. The consequence on the kinetics
of this interface is dramatic: the measured kinetic coefficient is three times
smaller than that predicted by collision-limited growth. Finally,
crystallization and melting are found to be always asymmetrical but here again
the effect is much more pronounced for the (111) orientation.Comment: 8 pages, 9 figures (for fig. 8 : [email protected]). Accepted for
publication in Phys. Rev.
First-principles calculation of the thermal properties of silver
The thermal properties of silver are calculated within the quasi-harmonic
approximation, by using phonon dispersions from density-functional perturbation
theory, and the pseudopotential plane-wave method. The resulting free energy
provides predictions for the temperature dependence of various quantities such
as the equilibrium lattice parameter, the bulk modulus, and the heat capacity.
Our results for the thermal properties are in good agreement with available
experimental data in a wide range of temperatures. As a by-product, we
calculate phonon frequency and Grueneisen parameter dispersion curves which are
also in good agreement with experiment.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B April 30, 1998). Other
related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Structure and Stability of an Amorphous Metal
Using molecular dynamics simulations, with a realistic many-body
embedded-atom potential, and a novel method to characterize local order, we
study the structure of pure nickel during the rapid quench of the liquid and in
the resulting glass. In contrast with previous simulations with pair
potentials, we find more crystalline order and fewer icosahedra for slower
quenching rates, resulting in a glass less stable against crystallization. It
is shown that there is not a specific amorphous structure, only the arrest of
the transition from liquid to crystal, resulting in small crystalline clusters
immersed in an amorphous matrix with the same structure of the liquid.Comment: 4 pages, 4 ps figs., to appear in Phys. Rev. Let
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Self-diffusion of adatoms, dimers, and vacancies on Cu(100)
We use ab initio static relaxation methods and semi-empirical
molecular-dynamics simulations to investigate the energetics and dynamics of
the diffusion of adatoms, dimers, and vacancies on Cu(100). It is found that
the dynamical energy barriers for diffusion are well approximated by the
static, 0 K barriers and that prefactors do not depend sensitively on the
species undergoing diffusion. The ab initio barriers are observed to be
significantly lower when calculated within the generalized-gradient
approximation (GGA) rather than in the local-density approximation (LDA). Our
calculations predict that surface diffusion should proceed primarily via the
diffusion of vacancies. Adatoms are found to migrate most easily via a jump
mechanism. This is the case, also, of dimers, even though the corresponding
barrier is slightly larger than it is for adatoms. We observe, further, that
dimers diffuse more readily than they can dissociate. Our results are discussed
in the context of recent submonolayer growth experiments of Cu(100).Comment: Submitted to the Physical Review B; 15 pages including postscript
figures; see also http://www.centrcn.umontreal.ca/~lewi
- …