45 research outputs found

    Graphite Nanoeraser

    Full text link
    We present here a method for cleaning intermediate-size (5~50nm) contamination from highly oriented pyrolytic graphite. Electron beam deposition causes a continuous increase of carbonaceous material on graphene and graphite surfaces, which is difficult to remove by conventional techniques. Direct mechanical wiping using a graphite nanoeraser is observed to drastically reduce the amount of contamination. After the mechanical removal of contamination, the graphite surfaces were able to self-retract after shearing, indicating that van der Waals contact bonding is restored. Since contact bonding provides an indication of a level of cleanliness normally only attainable in a high-quality clean-room, we discuss potential applications in preparation of ultraclean surfaces.Comment: 10 pages, two figure

    Differences in iNOS and Arginase Expression and Activity in the Macrophages of Rats Are Responsible for the Resistance against T. gondii Infection

    Get PDF
    Toxoplasma gondii infects humans and warm blooded animals causing devastating disease worldwide. It has long been a mystery as to why the peritoneal macrophages of rats are naturally resistant to T. gondii infection while those of mice are not. Here, we report that high expression levels and activity of inducible nitric oxide synthase (iNOS) and low levels of arginase-1 (Arg 1) activity in the peritoneal macrophages of rats are responsible for their resistance against T. gondii infection, due to high nitric oxide and low polyamines within these cells. The opposite situation was observed in the peritoneal macrophages of mice. This discovery of the opposing functions of iNOS and Arg 1 in rodent peritoneal macrophages may lead to a better understanding of the resistance mechanisms of mammals, particularly humans and livestock, against T. gondii and other intracellular pathogens
    corecore