10,443 research outputs found
The magnetic form factor of the deuteron in chiral effective field theory
We calculate the magnetic form factor of the deuteron up to O(eP^4) in the
chiral EFT expansion of the electromagnetic current operator. The two LECs
which enter the two-body part of the isoscalar NN three-current operator are
fit to experimental data, and the resulting values are of natural size. The
O(eP^4) description of G_M agrees with data for momentum transfers Q^2 < 0.35
GeV^2.Comment: 4 pages, 2 figure
Embodiment and designing learning environments
There is increasing recognition amongst learning sciences researchers of the critical role that the body plays in thinking and reasoning across contexts and across disciplines. This workshop brings ideas of embodied learning and embodied cognition to the design of instructional environments that engage learners in new ways of moving within, and acting upon, the physical world. Using data and artifacts from participants' research and designs as a starting point, this workshop focuses on strategies for how to effectively leverage embodiment in learning activities in both technology and non-technology environments. Methodologies for studying/assessing the body's role in learning are also addressed
Partitioning technique for a discrete quantum system
We develop the partitioning technique for quantum discrete systems. The graph
consists of several subgraphs: a central graph and several branch graphs, with
each branch graph being rooted by an individual node on the central one. We
show that the effective Hamiltonian on the central graph can be constructed by
adding additional potentials on the branch-root nodes, which generates the same
result as does the the original Hamiltonian on the entire graph. Exactly
solvable models are presented to demonstrate the main points of this paper.Comment: 7 pages, 2 figure
Resolving all-order method convergence problems for atomic physics applications
The development of the relativistic all-order method where all single,
double, and partial triple excitations of the Dirac-Hartree-Fock wave function
are included to all orders of perturbation theory led to many important results
for study of fundamental symmetries, development of atomic clocks, ultracold
atom physics, and others, as well as provided recommended values of many atomic
properties critically evaluated for their accuracy for large number of
monovalent systems. This approach requires iterative solutions of the
linearized coupled-cluster equations leading to convergence issues in some
cases where correlation corrections are particularly large or lead to an
oscillating pattern. Moreover, these issues also lead to similar problems in
the CI+all-order method for many-particle systems. In this work, we have
resolved most of the known convergence problems by applying two different
convergence stabilizer methods, reduced linear equation (RLE) and direct
inversion of iterative subspace (DIIS). Examples are presented for B, Al,
Zn, and Yb. Solving these convergence problems greatly expands the
number of atomic species that can be treated with the all-order methods and is
anticipated to facilitate many interesting future applications
Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory
Manipulating expressions in many-body perturbation theory becomes unwieldily
with increasing order of the perturbation theory. Here I derive a set of
theorems for efficient simplification of such expressions. The derived rules
are specifically designed for implementing with symbolic algebra tools. As an
illustration, we count the numbers of Brueckner-Goldstone diagrams in the first
several orders of many-body perturbation theory for matrix elements between two
states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from
http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm
Convergence of all-order many-body methods: coupled-cluster study for Li
We present and analyze results of the relativistic coupled-cluster
calculation of energies, hyperfine constants, and dipole matrix elements for
the , , and states of Li atom. The calculations are
complete through the fourth order of many-body perturbation theory for energies
and through the fifth order for matrix elements and subsume certain chains of
diagrams in all orders. A nearly complete many-body calculation allows us to
draw conclusions on the convergence pattern of the coupled-cluster method. Our
analysis suggests that the high-order many-body contributions to energies and
matrix elements scale proportionally and provides a quantitative ground for
semi-empirical fits of {\em ab inito} matrix elements to experimental energies.Comment: 4 pages, 3 figure
Recommended from our members
Simple devices for concentration of microbial life: Experiments in Haughton impact structure
Simple devices that create environments with high levels of light and moisture could attract extant microbial life on a planetary surface and hence enhance the detection of it. Experience in the Haughton crater shows that this can occur readily
Relativistic many-body calculation of low-energy dielectronic resonances in Be-like carbon
We apply relativistic configuration-interaction method coupled with many-body
perturbation theory (CI+MBPT) to describe low-energy dielectronic
recombination. We combine the CI+MBPT approach with the complex rotation method
(CRM) and compute the dielectronic recombination spectrum for Li-like carbon
recombining into Be-like carbon. We demonstrate the utility and evaluate the
accuracy of this newly-developed CI+MBPT+CRM approach by comparing our results
with the results of the previous high-precision study of the CIII system
[Mannervik et al., Phys. Rev. Lett. 81, 313 (1998)].Comment: 6 pages, 1 figure; v2,v3: fixed reference
Predictable Disruption Tolerant Networks and Delivery Guarantees
This article studies disruption tolerant networks (DTNs) where each node
knows the probabilistic distribution of contacts with other nodes. It proposes
a framework that allows one to formalize the behaviour of such a network. It
generalizes extreme cases that have been studied before where (a) either nodes
only know their contact frequency with each other or (b) they have a perfect
knowledge of who meets who and when. This paper then gives an example of how
this framework can be used; it shows how one can find a packet forwarding
algorithm optimized to meet the 'delay/bandwidth consumption' trade-off:
packets are duplicated so as to (statistically) guarantee a given delay or
delivery probability, but not too much so as to reduce the bandwidth, energy,
and memory consumption.Comment: 9 page
- …
