680,711 research outputs found

    A guided Monte Carlo method for optimization problems

    Get PDF
    We introduce a new Monte Carlo method by incorporating a guided distribution function to the conventional Monte Carlo method. In this way, the efficiency of Monte Carlo methods is drastically improved. To further speed up the algorithm, we include two more ingredients into the algorithm. First, we freeze the sub-patterns that have high probability of appearance during the search for optimal solution, resulting in a reduction of the phase space of the problem. Second, we perform the simulation at a temperature which is within the optimal temperature range of the optimization search in our algorithm. We use this algorithm to search for the optimal path of the traveling salesman problem and the ground state energy of the spin glass model and demonstrate that its performance is comparable with more elaborate and heuristic methods.Comment: 4 pages, ReVTe

    On quantum vertex algebras and their modules

    Full text link
    We give a survey on the developments in a certain theory of quantum vertex algebras, including a conceptual construction of quantum vertex algebras and their modules and a connection of double Yangians and Zamolodchikov-Faddeev algebras with quantum vertex algebras.Comment: 18 pages; contribution to the proceedings of the conference in honor of Professor Geoffrey Maso

    Modules-at-infinity for quantum vertex algebras

    Full text link
    This is a sequel to \cite{li-qva1} and \cite{li-qva2} in a series to study vertex algebra-like structures arising from various algebras such as quantum affine algebras and Yangians. In this paper, we study two versions of the double Yangian DY(sl2)DY_{\hbar}(sl_{2}), denoted by DYq(sl2)DY_{q}(sl_{2}) and DYq(sl2)DY_{q}^{\infty}(sl_{2}) with qq a nonzero complex number. For each nonzero complex number qq, we construct a quantum vertex algebra VqV_{q} and prove that every DYq(sl2)DY_{q}(sl_{2})-module is naturally a VqV_{q}-module. We also show that DYq(sl2)DY_{q}^{\infty}(sl_{2})-modules are what we call VqV_{q}-modules-at-infinity. To achieve this goal, we study what we call §\S-local subsets and quasi-local subsets of \Hom (W,W((x^{-1}))) for any vector space WW, and we prove that any §\S-local subset generates a (weak) quantum vertex algebra and that any quasi-local subset generates a vertex algebra with WW as a (left) quasi module-at-infinity. Using this result we associate the Lie algebra of pseudo-differential operators on the circle with vertex algebras in terms of quasi modules-at-infinity.Comment: Latex, 48 page

    A sequence based genetic algorithm with local search for the travelling salesman problem

    Get PDF
    The standard Genetic Algorithm often suffers from slow convergence for solving combinatorial optimization problems. In this study, we present a sequence based genetic algorithm (SBGA) for the symmetric travelling salesman problem (TSP). In our proposed method, a set of sequences are extracted from the best individuals, which are used to guide the search of SBGA. Additionally, some procedures are applied to maintain the diversity by breaking the selected sequences into sub tours if the best individual of the population does not improve. SBGA is compared with the inver-over operator, a state-of-the-art algorithm for the TSP, on a set of benchmark TSPs. Experimental results show that the convergence speed of SBGA is very promising and much faster than that of the inver-over algorithm and that SBGA achieves a similar solution quality on all test TSPs

    Induced junction solar cell and method of fabrication

    Get PDF
    An induced junction solar cell is fabricated on a p-type silicon substrate by first diffusing a grid of criss-crossed current collecting n+ stripes and thermally growing a thin SiO2 film, and then, using silicon-rich chemical vapor deposition (CVD), producing a layer of SiO2 having inherent defects, such as silicon interstices, which function as deep traps for spontaneous positive charges. Ion implantation increases the stable positive charge distribution for a greater inversion layer in the p-type silicon near the surface. After etching through the oxide to parallel collecting stripes, a pattern of metal is produced consisting of a set of contact stripes over the exposed collecting stripes and a diamond shaped pattern which functions as a current collection bus. Then the reverse side is metallized

    Joint Regression and Ranking for Image Enhancement

    Full text link
    Research on automated image enhancement has gained momentum in recent years, partially due to the need for easy-to-use tools for enhancing pictures captured by ubiquitous cameras on mobile devices. Many of the existing leading methods employ machine-learning-based techniques, by which some enhancement parameters for a given image are found by relating the image to the training images with known enhancement parameters. While knowing the structure of the parameter space can facilitate search for the optimal solution, none of the existing methods has explicitly modeled and learned that structure. This paper presents an end-to-end, novel joint regression and ranking approach to model the interaction between desired enhancement parameters and images to be processed, employing a Gaussian process (GP). GP allows searching for ideal parameters using only the image features. The model naturally leads to a ranking technique for comparing images in the induced feature space. Comparative evaluation using the ground-truth based on the MIT-Adobe FiveK dataset plus subjective tests on an additional data-set were used to demonstrate the effectiveness of the proposed approach.Comment: WACV 201

    Schemes and estimates for the long-time numerical solution of Maxwell’s equations for Lorentz metamaterials

    Get PDF
    We consider time domain formulations of Maxwell's equations for the Lorentz model for metamaterials. The field equations are considered in two different forms which have either six or four unknown vector fields. In each case we use arguments tuned to the physical laws to derive data-stability estimates which do not require Gronwall's inequality. The resulting estimates are, in this sense, sharp. We also give fully discrete formulations for each case and extend the sharp data-stability to these. Since the physical problem is linear it follows (and we show this with examples) that this stability property is also reflected in the constants appearing in the a priori error bounds. By removing the exponential growth in time from these estimates we conclude that these schemes can be used with confidence for the long-time numerical simulation of Lorentz metamaterials.This work was supported in part by NSFC Project 11271310, NSF grant DMS-1416742, and a grant from the Simons Foundation (#281296 to Li), in part by scheme 4 London Mathematical Society funding and in part by the Engineering and Physical Sciences Research Council (EP/H011072/1 to Shaw)
    corecore