12,445 research outputs found

    Signal mixer for optical heterodyne receiver

    Get PDF
    Incoming signal is mixed with local oscillator signal by a beam splitter inside laser cavity. Laser power can be reduced by 50 to 100 times

    Maxim

    Get PDF

    Laser space rendezvous and docking system trade-off study

    Get PDF
    The use, design, and fabrication feasibility of scanning the laser beam by swiveling the outside mirror with a ball joint swivel system is examined along with the applicability of graphite reinforced epoxy material for the construction of reflective optics. It is indicated that (1) the cost of graphite-epoxy will be more than that of many other materials due to the amount of special tooling required; (2) the weight advantage of graphite-epoxy over beryllium is minimal; the ball joint swivel system is accurate enough to perform the scanning function; and that the ball joint will result in a simpler and more cost effective scanning mechanism

    Laser space rendezvous and docking tradeoff

    Get PDF
    A spaceborne laser radar (LADAR) was configured to meet the requirements for rendezvous and docking with a cooperative object in synchronous orbit. The LADAR, configurated using existing pulsed CO2 laser technology and a 1980 system technology baseline, is well suited for the envisioned space tug missions. The performance of a family of candidate LADARS was analyzed. Tradeoff studies as a function of size, weight, and power consumption were carried out for maximum ranges of 50, 100, 200, and 300 nautical miles. The investigation supports the original contention that a rendezvous and docking LADAR can be constructed to offer a cost effective and reliable solution to the envisioned space missions. In fact, the CO2 ladar system offers distinct advantages over other candidate systems

    Laser space rendezvous and docking system study continuation

    Get PDF
    Investigations were made of a configuration for a spaceborne laser radar (ladar) to meet the requirements for rendezvous and docking with a cooperative object in synchronous orbit. An analysis was completed of laser phase locking techniques, while experimental verification was made of pulse repetition frequency and resonant scanning control loops. Data measurements on a satellite mock-up were also made. The investigation supports the original contention that a rendezvous and docking ladar can be configured to offer a cost effective and reliable solution to envisioned space missions

    H.P. Grice on location on Rossel Island

    No full text

    Electron-phonon bound states in graphene in a perpendicular magnetic field

    Full text link
    The spectrum of electron-phonon complexes in a monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for calculation of the scattering amplitude near the threshold of the optical phonon emission. Our findings beyond perturbation theory show that the true spectrum near the phonon emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of αω0\alpha \omega_{0} where α\alpha is the electron-phonon coupling and ω0\omega_{0} the phonon energy.Comment: To be published in Phys. Rev. Lett., 5 pages, 3 figures, 1 tabl
    • …
    corecore