36 research outputs found

    Gate-tunable, normally-on to normally-off memristance transition inpatterned LaAlO3/SrTiO3 interfaces

    Get PDF
    The authors gratefully acknowledge the support from the state of Bavaria as well as from the Deutsche Forschungsgemeinschaft (FOR1162 and SFB1170).We report gate-tunable memristive switching in patterned LaAlO3/SrTiO3 interfaces at cryogenic temperatures. The application of voltages in the order of a few volts to the back gate of the device allows controlling and switching on and -off the inherent memory functionality (memristance). For large and small gate voltages a simple non-linear resistance characteristic is observed while a pinched hysteresis loop and memristive switching occurs in an intermediate voltage range. The memristance is further controlled by the density of oxygen vacancies, which is tuned by annealing the sample at 300 °C in nitrogen atmosphere. Depending on the annealing time the memristance at zero gate voltage can be switched on and off leading to normally-on and normally-off memristors. The presented device offers reversible and irreversible control of memristive characteristics by gate voltages and annealing, respectively, which may allow to compensate fabrication variabilities of memristors that complicate the realization of large memristor-based neural networks.PostprintPeer reviewe

    Application of 4,5-diaminofluorescein to reliably measure nitric oxide released from endothelial cells in vitro

    Get PDF
    Here we describe in more depth the previously published application of the fluorescent probe 4,5-diaminofluorescein (DAF-2) in order to reliably measure low levels of nitric oxide (NO) as released from human endothelial cells in vitro. The used approach is based on the following considerations a) use low concentrations of DAF-2 (0.1 µM) in order to reduce the contribution of DAF-2 auto-fluorescence to the measured total fluorescence, and b) subtract the DAF-2 auto-fluorescence from the measured total fluorescence. The advantage of this method is the reliable quantification of NO in a biological system in the nanomolar range once thoroughly validated. Here we focus in addition to the previous publication (Leikert et al., FEBS Lett 2001, 506:131-134) on aspects of validation procedures as well as limitations and pitfalls of this method

    In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer

    Get PDF
    The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/Hz at Fourier frequencies above 100 mHz. © 2019 authors. Published by the American Physical Society

    Begehren und Konsens

    No full text

    Ăśber die bildende Wirkung der psychoanalytischen Kur

    No full text

    Chronic changes in the articular cartilage and meniscus following traumatic impact to the lapine knee

    No full text
    The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post-impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (. p=0.018) and femurs (. p\u3c0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (. p=0.026), 34.8% increase in tibial plateau permeability (. p=0.054), 40.8% increase in femoral condyle permeability (. p=0.029), and 20.1% decrease in femoral condyle matrix modulus (. p=0.012) in impacted joints compared to controls. Both instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (. p\u3c0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (. p=0.036). In both meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post-injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee

    Gate-tunable, normally-on to normally-off memristance transition inpatterned LaAlO<sub>3</sub>/SrTiO<sub>3</sub> interfaces

    No full text
    We report gate-tunable memristive switching in patterned LaAlO3/SrTiO3 interfaces at cryogenic temperatures. The application of voltages in the order of a few volts to the back gate of the device allows controlling and switching on and -off the inherent memory functionality (memristance). For large andsmall gate voltages a simple non-linear resistance characteristic is observed while a pinched hysteresis loop and memristive switching occurs in an intermediate voltage range. The memristance is further controlled by the density of oxygen vacancies, which is tuned by annealing the sample at 300 °C in nitrogen atmosphere. Depending on the annealing time the memristance at zero gate voltage can be switched on and off leading to normally-on and normally-off memristors. The presented device offers reversible and irreversible control of memristive characteristics by gate voltages and annealing,respectively, which may allow to compensate fabrication variabilities of memristors that complicate the realization of large memristor-based neural networks

    Longevity nutrients resveratrol, wines and grapes

    No full text
    A mild-to-moderate wine drinking has been linked with reduced cardiovascular, cerebrovascular, and peripheral vascular risk as well as reduced risk due to cancer. The reduced risk of cardiovascular disease associated with wine drinking is popularly known as French Paradox. A large number of reports exist in the literature indicating that resveratrol present in wine is primarily responsible for the cardioprotection associated with wine. Recently, resveratrol was shown to extend life span in yeast through the activation of longevity gene SirT1, which is also responsible for the longevity mediated by calorie restriction. This review summarizes the reports available on the functional and molecular biological aspects of resveratrol, wine and grapes in potentiating the longevity genes
    corecore