12 research outputs found

    New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat

    Get PDF
    Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28–31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12–32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs

    Node infection caused by Fusarium graminearum in wheat

    No full text
    An undescribed symptom caused by Fusarium graminearum was detected in wheat fields showing masses of orange sporodochia on the node and neighbouring stem tissue. Normally the head above infected nodes dies and only chaff is harvested. This is the first formal description of this type of stem infections caused by F. graminearum . The economic importance of these disease symptoms need further evaluation

    Node infection caused by Fusarium graminearum in wheat.

    No full text

    Detection of drought tolerance-related QTL in the Plainsman V./Cappelle Desprez doubled haploid wheat population

    No full text
    Drought stress is one of the major abiotic factors that significantly reduces wheat grain yield. Improving drought tolerance is a challenge that plant breeders are facing nowadays. In this study, our goal was to identify quantitative trait loci (QTL) in the Plainsman V./Cappelle Desprez doubled haploid (DH) population under drought induced as decreased irrigation (ds) and well-watered (ww) conditions in glasshouse. In total, 54 QTL were detected across the three years in two water regimes linked to 10 drought tolerance-related agronomic traits. Out of the detected QTL regions several have been previously reported. The QTL on chromosome 1A (wPt-744613-wPt-8016) related to thousand grain weight was detected in both ds and ww conditions, explaining the 12.7–17.4% of the phenotypic variance. QTL for grain yield was detected on chromosomes 1A, and 6B in the ds treatment. Numerous QTL was identified under both irrigation levels
    corecore