10,229 research outputs found

    D-outcome measurement for a nonlocality test

    Full text link
    For the purpose of the nonlocality test, we propose a general correlation observable of two parties by utilizing local dd-outcome measurements with SU(dd) transformations and classical communications. Generic symmetries of the SU(dd) transformations and correlation observables are found for the test of nonlocality. It is shown that these symmetries dramatically reduce the number of numerical variables, which is important for numerical analysis of nonlocality. A linear combination of the correlation observables, which is reduced to the Clauser-Horne-Shimony-Holt (CHSH) Bell's inequality for two outcome measurements, is led to the Collins-Gisin-Linden-Massar-Popescu (CGLMP) nonlocality test for dd-outcome measurement. As a system to be tested for its nonlocality, we investigate a continuous-variable (CV) entangled state with dd measurement outcomes. It allows the comparison of nonlocality based on different numbers of measurement outcomes on one physical system. In our example of the CV state, we find that a pure entangled state of any degree violates Bell's inequality for d(2)d(\ge 2) measurement outcomes when the observables are of SU(dd) transformations.Comment: 16 pages, 2 figure

    Entanglement transfer from continuous variables to qubits

    Get PDF
    We show that two qubits can be entangled by local interactions with an entangled two-mode continuous variable state. This is illustrated by the evolution of two two-level atoms interacting with a two-mode squeezed state. Two modes of the squeezed field are injected respectively into two spatially separate cavities and the atoms are then sent into the cavities to resonantly interact with the cavity field. We find that the atoms may be entangled even by a two-mode squeezed state which has been decohered while penetrating into the cavity.Comment: 5 pages, 4 figure

    Mean Field Theoretical Structure of He and Be Isotopes

    Full text link
    The structures of He and Be even-even isotopes are investigated using an axially symmetric Hartree-Fock approach with a Skyrme-IIIls mean field potential. In these simple HF calculations, He and Be isotopes appear to be prolate in their ground states and Be isotopes have oblate shape isomeric states. It is also shown that there exists a level crossing when the nuclear shape changes from the prolate state to the oblate state. The single neutron levels of Be isotopes exhibit a neutron magic number 6 instead of 8 and show that the level inversion between 1/2- and 1/2+ levels occurs only for a largely deformed isotope. Protons are bound stronger in the isotope with more neutrons while neutron levels are somewhat insensitive to the number of neutrons and thus the nuclear size and also the neutron skin become larger as the neutron number increases. In these simple calculations with Skyrme-IIIls interaction no system with a clear indication of neutron halo was found among He and Be isotopes. Instead of it we have found 8He+2n, 2n+8He+2n, and 16Be+2n like chain structures with clusters of two correlated neutrons. It is also shown that 8He and 14Be in their ground states are below the neutron drip line in which all nucleons are bound with negative energy and that 16Be in its ground state is beyond the neutron drip line with two neutrons in positive energy levels.Comment: CM energy correction, 1 figure and more discussions adde

    Generic Bell inequalities for multipartite arbitrary dimensional systems

    Full text link
    We present generic Bell inequalities for multipartite multi-dimensional systems. The inequalities that any local realistic theories must obey are violated by quantum mechanics for even-dimensional multipartite systems. A large set of variants are shown to naturally emerge from the generic Bell inequalities. We discuss particular variants of Bell inequalities, that are violated for all the systems including odd-dimensional systems.Comment: Accepted in Phys. Rev. Let

    Optimal conclusive teleportation of a d-dimensional unknown state

    Get PDF
    We formulate a conclusive teleportation protocol for a system in d-dimensional Hilbert space utilizing the positive operator valued measurement at the sending station. The conclusive teleportation protocol ensures some perfect teleportation events when the channel is only partially entangled, at the expense of lowering the overall average fidelity. We find the change of the fidelity as optimizing the conclusive teleportation events and discuss how much information remains in the inconclusive parts of the teleportation.Comment: 7 pages, 1 figure; figure correcte

    Breakdown of the interlayer coherence in twisted bilayer graphene

    Full text link
    Coherent motion of the electrons in the Bloch states is one of the fundamental concepts of the charge conduction in solid state physics. In layered materials, however, such a condition often breaks down for the interlayer conduction, when the interlayer coupling is significantly reduced by e.g. large interlayer separation. We report that complete suppression of coherent conduction is realized even in an atomic length scale of layer separation in twisted bilayer graphene. The interlayer resistivity of twisted bilayer graphene is much higher than the c-axis resistivity of Bernal-stacked graphite, and exhibits strong dependence on temperature as well as on external electric fields. These results suggest that the graphene layers are significantly decoupled by rotation and incoherent conduction is a main transport channel between the layers of twisted bilayer graphene.Comment: 5 pages, 3 figure

    Electrical Switching in Metallic Carbon Nanotubes

    Full text link
    We present first-principles calculations of quantum transport which show that the resistance of metallic carbon nanotubes can be changed dramatically with homogeneous transverse electric fields if the nanotubes have impurities or defects. The change of the resistance is predicted to range over more than two orders of magnitude with experimentally attainable electric fields. This novel property has its origin that backscattering of conduction electrons by impurities or defects in the nanotubes is strongly dependent on the strength and/or direction of the applied electric fields. We expect this property to open a path to new device applications of metallic carbon nanotubes.Comment: 4 pages and 4 figure

    Assessing the Social Media Use and Needs of Small Rural Retailers: Implications for Extension Program Support

    Get PDF
    To assess small rural retailers\u27 use of social media and the role of social media in their business sustainability, we conducted focus group interviews with small business owners/managers from rural communities in a midwestern state. Participants revealed strong interest in social media, especially for use in sales and marketing. However, their engagement in social media was limited due to lack of knowledge and resources (i.e., time, human resources, financial resources, effectiveness measurement) related to developing and updating content. On the basis of these findings, we examine implications for Extension professionals and outreach educators regarding social media needs and programming for small rural businesses

    Estimating Carbon Dynamics in an Intact Lowland Mixed Dipterocarp Forest Using a Forest Carbon Model

    Get PDF
    Intact dipterocarp forests in Asia act as crucial carbon (C) reservoirs, and it is therefore important to investigate the C dynamics in these forests. We estimated C dynamics, together with net ecosystem production (NEP), in an intact tropical dipterocarp forest of Brunei Darussalam. Fifty-four simulation units (plots; 20 m × 20 m) were established and initial C stocks were determined via direct field measurement. The C dynamics were annually simulated with a regression model and the Forest Biomass and Dead organic matter Carbon (FBDC) model. The initial C stock (Mg C·ha−1) of biomass, litter, dead wood and mineral soil were 213.1 ± 104.8, 2.0 ± 0.8, 31.3 ± 38.8, and 80.7 ± 15.5, respectively. Their annual changes (Mg C·ha−1·year−1) were 3.2 ± 1.1, 0.2 ± 0.2, −3.7 ± 6.1, and −0.3 ± 1.1, respectively. NEP was −0.6 ± 6.1 Mg C·ha−1·year−1, showing large heterogeneity among the plots. The initial C stocks of biomass and dead wood, biomass turnover rates and dead wood decay rates were elucidated as dominant factors determining NEP in a sensitivity analysis. Accordingly, investigation on those input data can constrain an uncertainty in determining NEP in the intact tropical forests

    Estimating the carbon dynamics of South Korean forests from 1954 to 2012

    Get PDF
    Forests play an important role in the global carbon (C) cycle, and the South Korean forests also contribute to this global C cycle. While the South Korean forest ecosystem was almost completely destroyed by exploitation and the Korean War, it has successfully recovered because of national-scale reforestation programs since 1973. There have been several studies on the estimation of C stocks and balances over the past decades in the South Korean forests. However, a retrospective long-term study that includes biomass and dead organic matter C and validates dead organic matter C is still lacking. Accordingly, we estimated the C stocks and their changes of both biomass and dead organic matter C during the 1954-2012 period using a process-based model, the Korean Forest Soil Carbon model, and the 5th South Korean national forest inventory (NFI) report. Validation processes were also conducted based on the 5th NFI and statistical data. Simulation results showed that the biomass C stocks increased from 36.4 to 440.4 Tg C at a rate of 7.0 Tg C yrg-1 during the period 1954-2012. The dead organic matter C stocks increased from 386.0 to 463.1 Tg C at a rate of 1.3 Tg C yrg-1 during the same period. The estimates of biomass and dead organic matter C stocks agreed well with observed C stock data. The annual net biome production (NBP) during the period 1954-2012 was 141.3 g C mg-2 yrg-1, which increased from ??'8.8 g C mg-2 yrg-1 in 1955 to 436.6 g C mg-2 yrg-1 in 2012. Because of the small forested area, the South Korean forests had a comparatively lower contribution to the annual C sequestration by global forests. In contrast, because of the extensive reforestation programs, the NBP of South Korean forests was much higher than those of other countries. Our results could provide the forest C dynamics in South Korean forests before and after the onset of reforestation programs.Korea Forest Service (S111314L100120, S111114L030100) and Korea Ministry of Environment (C314-00131-0408-0).Scopu
    corecore