2,413 research outputs found

    Operating Characteristics of the Multiple Critical Venturi System and Secondary Calibration Nozzles Used for Weight-Flow Measurements in the Langley 16-Foot Transonic Tunnel

    Get PDF
    An investigation has been conducted in the Langley 16 Foot Transonic Tunnel to determine the weight flow measurement characteristics of a multiple critical Venturi system and the nozzle discharge coefficient characteristics of a series of convergent calibration nozzles. The effects on model discharge coefficient of nozzle throat area, model choke plate open area, nozzle pressure ratio, jet total temperature, and number and combination of operating Venturis were investigated. Tests were conducted at static conditions (tunnel wind off) at nozzle pressure ratios from 1.3 to 7.0

    CHEMICALS IN AGRICULTURE AND FOOD

    Get PDF
    Agribusiness,

    Co-Cultures of Oophila Amblystomatis Between Ambystoma Maculatum and Ambystoma Gracile Hosts Show Host-Symbiont Fidelity

    Get PDF
    A unique symbiosis occurs between embryos of the spotted salamander (Ambystoma maculatum) and a green alga (Oophila amblystomatis). Unlike most vertebrate host-symbiont relationships, which are ectosymbiotic, A. maculatum exhibits both an ecto- and an endo-symbiosis, where some of the green algal cells living inside egg capsules enter embryonic tissues as well as individual salamander cells. Past research has consistently categorized this symbiosis as a mutualism, making this the first example of a ā€œbeneficialā€ microbe entering vertebrate cells. Another closely related species of salamander, Ambystoma gracile, also harbors beneficial Oophila algae in its egg capsules. However, our sampling within the A. gracile range consistently shows this to be a strict ectosymbiotic interactionā€”with no sign of tissue or presumably cellular entry. In this study we swapped cultured algae derived from intracapsular fluid of different salamander hosts to test the fidelity of tissue entry in these symbioses. Both A. maculatum and A. gracile embryos were raised in cultures with their own algae or algae cultured from the other host. Under these in vitro culture conditions A. maculatum algae will enter embryonic A. maculatum tissues. Additionally, although at a much lower frequency, A. gracile derived algae will also enter A. maculatum host tissues. However, neither Oophila strain enters A. gracile hosts in these co-culture conditions. These data reveal a potential host-symbiont fidelity that allows the unique endosymbiosis to occur in A. maculatum, but not in A. gracile. However, preliminary trials in our study found that persistent endogenous A. maculatum algae, as opposed to the cultured algae used in subsequent trials, enters host tissues at a higher frequency. An analysis of previously published Oophila transcriptomes revealed dramatic differences in gene expression between cultured and intracapsular Oophila. These include a suite of genes in protein and cell wall synthesis, photosynthesis, central carbon metabolism suggesting the intracapsular algae are assimilating ammonia for nitrogen metabolism and may be undergoing a life-cycle transition. Further refinements of these co-culture conditions could help determine physiological differences between cultured and endogenous algae, as well as rate-limiting cues provided for the alga by the salamander

    Quantifying microbial utilization of petroleum hydrocarbons in salt-marsh sediments using the ^(13)C content of bacterial rRNA

    Get PDF
    Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we take a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon-isotopic abundance between a salt marsh ecosystem supported by the ^(13)C-enriched C4 grass, Spartina alterniflora, and the ^(13)C-depleted composition of petroleum to monitor changes in the ^(13)C content of biomass. Magnetic-bead capture methods for the selective recovery of bacterial RNA were used to monitor the ^(13)C content of bacterial biomass during a two-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass derived from consumption of the freshly-spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of {gamma}- and {delta}-Proteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic-bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in-situ. Although employed here at the Domain level, RNA-capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the ^(13)C content of biomarker lipids

    Addition of H_2O and O_2 to Acetone and Dimethylsulfoxide Ligated Uranyl(V) Dioxocations

    Get PDF
    Gas-phase complexes of the formula [UO_2(lig)]^+ (lig = acetone (aco) or dimethylsulfoxide (dmso)) were generated by electrospray ionization (ESI) and studied by tandem ion-trap mass spectrometry to determine the general effect of ligand charge donation on the reactivity of UO_2^+ with respect to water and dioxygen. The original hypothesis that addition of O_2 is enhanced by strong Ļƒ-donor ligands bound to UO_2^+ is supported by results from competitive collision-induced dissociation (CID) experiments, which show near exclusive loss of H_2O from [UO_2(dmso)(H_2O)(O_2)]^+, whereas both H_2O and O_2 are eliminated from the corresponding [UO_2(aco)(H_2O)(O_2)]^+ species. Ligand-addition reaction rates were investigated by monitoring precursor and product ion intensities as a function of ion storage time in the ion-trap mass spectrometer: these experiments suggest that the association of dioxygen to the UO_2^+ complex is enhanced when the more basic dmso ligand was coordinated to the metal complex. Conversely, addition of H_2O is favored for the analogous complex ion that contains an aco ligand. Experimental rate measurements are supported by density function theory calculations of relative energies, which show stronger bonds between UO_2^+ and O_2 when dmso is the coordinating ligand, whereas bonds to H_2O are stronger for the aco complex
    • ā€¦
    corecore