1,569 research outputs found

    Classical-Quantum Mixing in the Random 2-Satisfiability Problem

    Full text link
    Classical satisfiability (SAT) and quantum satisfiability (QSAT) are complete problems for the complexity classes NP and QMA which are believed to be intractable for classical and quantum computers, respectively. Statistical ensembles of instances of these problems have been studied previously in an attempt to elucidate their typical, as opposed to worst case, behavior. In this paper we introduce a new statistical ensemble that interpolates between classical and quantum. For the simplest 2-SAT/2-QSAT ensemble we find the exact boundary that separates SAT and UNSAT instances. We do so by establishing coincident lower and upper bounds, in the limit of large instances, on the extent of the UNSAT and SAT regions, respectively.Comment: Updated reference

    Clustering in Hilbert space of a quantum optimization problem

    Full text link
    The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state subspace of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum clusters correspond to macroscopically distinct subspaces of the full quantum ground state space which grow with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their internal entropy. The former are given by the number of hardcore dimer coverings of the core of the interaction graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We additionally provide new numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.Comment: 11 pages, 6 figure

    Approximating random quantum optimization problems

    Full text link
    We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem kk-QSAT on large random graphs. As an approximation strategy, we optimize the solution space over `classical' product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are: (i) The derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment. (ii) A demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects structure of the solution space of random kk-QSAT. Simulated annealing exhibits metastability in similar `hard' regions of parameter space. (iii) A generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy `landscape' of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random kk-QSAT in a two-dimensional energy-density--clause-density space.Comment: 14 pages, 9 figure

    AKLT Models with Quantum Spin Glass Ground States

    Full text link
    We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid ground states, b) critical and ordered N\'eel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate N\'eel ordering despite the lack of randomness in the coupling strengths.Comment: 10 pages, 1 figur

    On product, generic and random generic quantum satisfiability

    Full text link
    We report a cluster of results on k-QSAT, the problem of quantum satisfiability for k-qubit projectors which generalizes classical satisfiability with k-bit clauses to the quantum setting. First we define the NP-complete problem of product satisfiability and give a geometrical criterion for deciding when a QSAT interaction graph is product satisfiable with positive probability. We show that the same criterion suffices to establish quantum satisfiability for all projectors. Second, we apply these results to the random graph ensemble with generic projectors and obtain improved lower bounds on the location of the SAT--unSAT transition. Third, we present numerical results on random, generic satisfiability which provide estimates for the location of the transition for k=3 and k=4 and mild evidence for the existence of a phase which is satisfiable by entangled states alone.Comment: 9 pages, 5 figures, 1 table. Updated to more closely match published version. New proof in appendi

    Emergent Fine Structure Constant of Quantum Spin Ice Is Large

    Get PDF
    Condensed-matter systems provide alternative "vacua" exhibiting emergent low-energy properties drastically different from those of the standard model. A case in point is the emergent quantum electrodynamics (QED) in the fractionalized topological magnet known as quantum spin ice, whose magnetic monopoles set it apart from the familiar QED of the world we live in. Here, we show that the two greatly differ in their fine structure constant alpha, which parametrizes how strongly matter couples to light: alpha(QSI) is more than an order of magnitude greater than alpha(QED) approximate to 1/137. Furthermore, alpha(QSI), the emergent speed of light, and all other parameters of the emergent QED, are tunable by engineering the microscopic Hamiltonian. We find that alpha(QSI) can be tuned all the way from zero up to what is believed to be the strongest possible coupling beyond which QED confines. In view of the small size of its constrained Hilbert space, this marks out quantum spin ice as an ideal platform for studying exotic quantum field theories and a target for quantum simulation. The large alpha(QSI) implies that experiments probing candidate condensed-matter realizations of quantum spin ice should expect to observe phenomena arising due to strong interactions

    Cavity method for quantum spin glasses on the Bethe lattice

    Full text link
    We propose a generalization of the cavity method to quantum spin glasses on fixed connectivity lattices. Our work is motivated by the recent refinements of the classical technique and its potential application to quantum computational problems. We numerically solve for the phase structure of a connectivity q=3q=3 transverse field Ising model on a Bethe lattice with ±J\pm J couplings, and investigate the distribution of various classical and quantum observables.Comment: 27 pages, 9 figure
    • …
    corecore